- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- + 概率
- 随机事件的概率
- 古典概型
- 几何概型
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲乙两人下中国象棋,甲不输的概率为80%,乙不输的概率为70%,则甲乙两人和棋的概率为( )
A.20% | B.30% | C.50% | D.60% |
(本小题满分10分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.

(1)若日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人?
(2)从这6名工人中任取2人,设这两人加工零件的个数分别为
,求
的概率.

(1)若日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人?
(2)从这6名工人中任取2人,设这两人加工零件的个数分别为


在编号为1,2,3, ,n的n张奖卷中,采取不放回方式抽奖,若1号为获奖号码,则在第k次(1≤k≤n)抽签时抽到1号奖卷的概率为 .
在一块并排10垄的土地上,选择2垄分别种植A、B两种植物,每种植物种植1垄,为有利于植物生长,则A、B两种植物的间隔不小于6垄的概率为( )
A.
B.
C.
D.
A.




(本题满分13分)两人约定在20∶00到21∶00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20∶00至21∶00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率。
(本题12分)有4个不同的小球,4个不同的盒子,现需把球全部放进盒子里,
(1)没有空盒子的方法共有多少种?
(2)可以有空盒子的方法共有多少种?
(3)恰有1个盒子不放球,共有多少种方法?(最后结果用数字作答)
(1)没有空盒子的方法共有多少种?
(2)可以有空盒子的方法共有多少种?
(3)恰有1个盒子不放球,共有多少种方法?(最后结果用数字作答)
(本小题满分12分)一种电子玩具按下按钮后,会出现红球或绿球.已知按钮第一次按下后,出现红球与绿球的概率都是
从按钮第二次按下起,若前次出现红球,则下一次出现红球、绿球的概率分别为
、
;若前次出现绿球,则下一次出现红球,绿球的概率分别为
、
记第
次按下按钮后出现红的概率为Pn.
(1)求P2的值;
(2)当
的表达式;
(3)求Pn关于n的表达式.





记第

(1)求P2的值;
(2)当

(3)求Pn关于n的表达式.
(本小题满分12分)在甲、乙两个盒子中分别装有标号为1,2,3,4的四张卡片,现从甲、乙两个盒子中各取出1张卡片,每张卡片被取出的可能性相等;
(Ⅰ)求取出的两张卡片标号之积能被3整除的概率;
(Ⅱ)如果小王、小李取出的两张卡片的标号相加,谁的两张卡片标号之和大则谁胜出,若小王先抽,抽出卡片的标号分别为3和4,且小王抽出的两张卡片不再放回盒中,小李再抽;求小王胜出的概率。
(Ⅰ)求取出的两张卡片标号之积能被3整除的概率;
(Ⅱ)如果小王、小李取出的两张卡片的标号相加,谁的两张卡片标号之和大则谁胜出,若小王先抽,抽出卡片的标号分别为3和4,且小王抽出的两张卡片不再放回盒中,小李再抽;求小王胜出的概率。
从某批零件中抽取50个,然后再从50个中抽出40个进行检查,发现合格品有38个,则该批产品的合格率为( )
A.38% | B.76% | C.90% | D.95% |