- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 组合意义理解
- 排列(数)与组合(数)的区别
- + 组合数的计算
- 利用组合数公式证明
- 组合数方程和不等式
- 组合数的性质及应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
袋中装有m个红球和n个白球,
,现从中任取两球,若取出的两球是同色的概率等于取出的两球是异色的概率,则满足关系
的数组
的个数为( )



A.3 | B.4 | C.5 | D.6 |
杨辉三角是二项式系数在三角形中的一种几何排列,是中国古代数学的杰出研究成果之一.在欧洲,左下图叫帕斯卡三角形,帕斯卡在1654年发现的这一规律,比杨辉要迟393年,比贾宪迟600年.某大学生要设计一个程序框图,按右下图标注的顺序将表上的数字输出,若第5次输出数“1”后结束程序,则空白判断框内应填入的条件为( )




A.![]() | B.![]() | C.![]() | D.![]() |
平面上有
个点,将每一个点染上红色或蓝色.从这
个点中,任取
个点,记
个点颜色相同的所有不同取法总数为
.
(1)若
,求
的最小值;
(2)若
,求证:
.





(1)若


(2)若


从8名女生和4名男生中,抽取3名学生参加某档电视节目,如果按性别比例分层抽样,则不同的抽取方法数为( )
A.224 | B.112 | C.56 | D.28 |
平面上有12个不同的点,其中任何3点不在同一直线上. 如果任取3点作为顶点作三角形,那么一共可作_________个三角形.(结果用数值表示)