- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 全排列问题
- + 元素(位置)有限制的排列问题
- 相邻问题的排列问题
- 不相邻排列问题
- 其他排列模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
将四个编号为1,2,3,4的小球放入四个编号为1,2,3,4的盒子中.
(1)有多少种放法?
(2)若每盒至多一球,则有多少种放法?
(3)若恰好有一个空盒,则有多少种放法?
(4)若每个盒内放一个球,并且恰好有一个球的编号与盒子的编号相同,则有多少种放法?
(1)有多少种放法?
(2)若每盒至多一球,则有多少种放法?
(3)若恰好有一个空盒,则有多少种放法?
(4)若每个盒内放一个球,并且恰好有一个球的编号与盒子的编号相同,则有多少种放法?
6个人按下列要求站一横排,分别有多少种不同的站法?
(1)甲不站两端;
(2)甲、乙必须相邻;
(3)甲、乙不相邻;
(4)甲、乙之间间隔两人;
(5)甲、乙站在两端;
(6)甲不站左端,乙不站右端.
(1)甲不站两端;
(2)甲、乙必须相邻;
(3)甲、乙不相邻;
(4)甲、乙之间间隔两人;
(5)甲、乙站在两端;
(6)甲不站左端,乙不站右端.
在航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有
A.24种 | B.48种 | C.96种 | D.144种 |
5名男生与5名女生排成一排,男生甲与男生乙之间有且只有2名女生,且女生不排在两端,这样的排列种数为 ( )
A.5760 | B.57600 | C.2880 | D.28800 |
某班举行的联欢会由5个节目组成,节目演出顺序要求如下: 节目甲不能排在第一个,并且节目甲必须和节目乙相邻.则该班联欢会节目演出顺序的编排方案共有____种.
“2 012”含有数字0,1,2,且有两个数字2,则含有数字0,1,2,且有两个相同数字的四位数的个数为( )
A.18 | B.24 |
C.27 | D.36 |
有2名男生、3名女生,在下列不同条件下,求不同的排列方法总数.
(1)全体站成一排,甲不站排头也不站排尾;
(2)全体站成一排,女生必须站在一起;
(3)全体站成一排,男生互不相邻.
(1)全体站成一排,甲不站排头也不站排尾;
(2)全体站成一排,女生必须站在一起;
(3)全体站成一排,男生互不相邻.
某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有( )
A.900种 | B.600种 | C.300种 | D.150种 |