- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 全排列问题
- + 元素(位置)有限制的排列问题
- 相邻问题的排列问题
- 不相邻排列问题
- 其他排列模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
有3名女生和5名男生,按照下列条件排队,求各有多少种不同的排队方法?
名女生排在一起;
名女生次序一定,但不一定相邻;
名女生不站在排头和排尾,也互不相邻;
每两名女生之间至少有两名男生;
名女生中,A,B要相邻,A,C不相邻.





元旦晚会期间,高三二班的学生准备了6 个参赛节目,其中有 2 个舞蹈节目,2 个小品节目,2个歌曲节目,要求歌曲节目一定排在首尾,另外2个舞蹈节目一定要排在一起,则这 6 个节目的不同编排种数为
A.48 | B.36 | C.24 | D.12 |






A.![]() | B.![]() | C.![]() | D.![]() |
7个身高均不相同的学生排成一排合影留念,最高个子站在中间,从中间到左边和从中间到右边一个比一个矮,则这样的排法共有( )
A.20 | B.40 | C.120 | D.400 |
将颜色分别为红、黑、蓝、绿的4支笔全部放到颜色分别为红、黑、蓝、绿的四个笔盒里,每个笔盒只放一支笔,若恰有一支笔被放到了与其颜色相同的笔盒里,则共有( )种不同的放法.
A.4 | B.8 | C.12 | D.24 |
若数列
满足:
,则称数列
为“正弦数列”,现将
这五个数排成一个“正弦数列”,所有排列种数记为
,则二项式
的展开式中含
项的系数为________ .







4男3女站成一排,求满足下列条件的排法共有多少种?
任何两名女生都不相邻,有多少种排法?
男甲不在首位,男乙不在末位,有多少种排法?
男生甲、乙、丙顺序一定,有多少种排法?
男甲在男乙的左边
不一定相邻
有多少种不同的排法?






某国的篮球职业联赛共有16支球队参加.
(1)每队与其余各队在主客场分别比赛一次,共要进行多少场比赛?
(2)若16支球队恰好8支来自北部赛区,8支来自南部赛区,为增加比赛观赏度,各自赛区分别采用(1)中的赛制决出赛区冠军后,再进行一场总冠军赛,共要进行多少场比赛?
(1)每队与其余各队在主客场分别比赛一次,共要进行多少场比赛?
(2)若16支球队恰好8支来自北部赛区,8支来自南部赛区,为增加比赛观赏度,各自赛区分别采用(1)中的赛制决出赛区冠军后,再进行一场总冠军赛,共要进行多少场比赛?