- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 全排列问题
- + 元素(位置)有限制的排列问题
- 相邻问题的排列问题
- 不相邻排列问题
- 其他排列模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
有男运动员6名,女运动员4名,其中男女队长各1名.选派5人外出比赛,在下列情形中各有多少种选派方法?
(1)男运动员3名,女运动员2名;
(2)至少有1名女运动员;
(3)既要有队长,又要有女运动员.
(1)男运动员3名,女运动员2名;
(2)至少有1名女运动员;
(3)既要有队长,又要有女运动员.
某学习小组有
个男生和
个女生共
人:
(1)将此
人排成一排,男女彼此相间的排法有多少种
(2)将此
人排成一排,男生甲不站最左边,男生乙不站最右边的排法有多少种
(3)从中选出
名男生和
名女生分别承担
种不同的任务,有多少种选派方法
(4)现有
个座位连成一排,仅安排
个女生就座,恰有两个空位相邻的不同坐法共有多少种



(1)将此


(2)将此


(3)从中选出




(4)现有



《中国诗词大会》亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面(可以不相邻),《山居秋暝》 与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有__________.
根据浙江省新高考方案,每位考生除语、数、外3门必考科目外,有3门选考科目,并且每门选考科目都有2次考试机会,每年有两次考试时间,某考生为了取得最好成绩,将3门选考科目共6次考试机会安排在高二与高三的4次考试中,且每次至多考2门,则该考生共有___ 种不同的考试安排方法.
5名师生站成一排照相留念,其中教师1人,男生2人,女生2人.
(1)求两名女生相邻而站的概率;
(2)求教师不站中间且女生不站两端的概率.
(1)求两名女生相邻而站的概率;
(2)求教师不站中间且女生不站两端的概率.
有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.
(1)全体排成一行,其中男生必须排在一起;
(2)全体排成一行,男、女各不相邻;
(3)全体排成一行,其中甲不在最左边,乙不在最右边;
(4)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.
(1)全体排成一行,其中男生必须排在一起;
(2)全体排成一行,男、女各不相邻;
(3)全体排成一行,其中甲不在最左边,乙不在最右边;
(4)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.