- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 排列与排列数公式
- + 排列应用题
- 全排列问题
- 元素(位置)有限制的排列问题
- 相邻问题的排列问题
- 不相邻排列问题
- 其他排列模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某中学音乐社共有9人,其中高一的同学有4人,高二的同学有3人,高三的同学有2人.他们排成一排合影,则同年级的同学都排在一起的概率为________.
郑州绿博园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,其中的小李和小王不在一起,则不同的安排方案共有
A.168种 | B.156种 |
C.172种 | D.180种 |
今有男生3人,女生3人,老师1人排成一排,要求老师站在正中间,女生有且仅有两人相邻,则共有多少种不同的排法?( )
A.216 | B.260 | C.432 | D.456 |
从5名学生中任选3人分别担任语文、数学、英语课代表,其中学生甲不能担任数学课代表,共有________种不同的选法(结果用数值表示)
《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )
A.288种 | B.144种 | C.720种 | D.360种 |
现有5名男生和3名女生站成一排照相,
(1)3名女生站在一起,有多少种不同的站法?
(2)3名女生次序一定,但不一定相邻,有多少种不同的站法?
(3)3名女生不站在排头和排尾,也互不相邻,有多少种不同的站法?
(4)3名女生中,A,B要相邻,A,C不相邻,有多少种不同的站法?
(1)3名女生站在一起,有多少种不同的站法?
(2)3名女生次序一定,但不一定相邻,有多少种不同的站法?
(3)3名女生不站在排头和排尾,也互不相邻,有多少种不同的站法?
(4)3名女生中,A,B要相邻,A,C不相邻,有多少种不同的站法?