- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 排列与排列数公式
- + 排列应用题
- 全排列问题
- 元素(位置)有限制的排列问题
- 相邻问题的排列问题
- 不相邻排列问题
- 其他排列模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有( )
A.20种 | B.30种 | C.40种 | D.60种 |
如图,有一种游戏画板,要求参与者用六种颜色给画板涂色,这六种颜色分别为红色、黄色1、黄色2、黄色3、金色1、金色2,其中黄色1、黄色2、黄色3是三种不同的颜色,金色1、金色2是两种不同的颜色,要求红色不在两端,黄色1、黄色2、黄色3有且仅有两种相邻,则不同的涂色方案有( )


A.120种 | B.240种 | C.144种 | D.288种 |
某教师准备对一天的五节课进行课程安排,要求语文、数学、外语、物理、化学每科分别要排一节课,则数学不排第一节,物理不排最后一节的情况下,化学排第四节的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有
A.5种 | B.10种 |
C.20种 | D.120种 |
在班级活动中,4名男生和3名女生站成一排表演节目.
(Ⅰ)3名女生相邻,有多少种不同的站法?
(Ⅱ)女生甲不能站在最左端,有多少种不同的站法?
(Ⅰ)3名女生相邻,有多少种不同的站法?
(Ⅱ)女生甲不能站在最左端,有多少种不同的站法?