- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 排列与排列数公式
- + 排列应用题
- 全排列问题
- 元素(位置)有限制的排列问题
- 相邻问题的排列问题
- 不相邻排列问题
- 其他排列模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若数列
满足:
,则称数列
为“正弦数列”,现将
这五个数排成一个“正弦数列”,所有排列种数记为
,则二项式
的展开式中含
项的系数为________ .







4男3女站成一排,求满足下列条件的排法共有多少种?
任何两名女生都不相邻,有多少种排法?
男甲不在首位,男乙不在末位,有多少种排法?
男生甲、乙、丙顺序一定,有多少种排法?
男甲在男乙的左边
不一定相邻
有多少种不同的排法?






我校2018年高考再创佳绩,共有13人被清华北大录取.现需要他们13人站成一排合影留念,那么甲乙两人相邻的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
某国的篮球职业联赛共有16支球队参加.
(1)每队与其余各队在主客场分别比赛一次,共要进行多少场比赛?
(2)若16支球队恰好8支来自北部赛区,8支来自南部赛区,为增加比赛观赏度,各自赛区分别采用(1)中的赛制决出赛区冠军后,再进行一场总冠军赛,共要进行多少场比赛?
(1)每队与其余各队在主客场分别比赛一次,共要进行多少场比赛?
(2)若16支球队恰好8支来自北部赛区,8支来自南部赛区,为增加比赛观赏度,各自赛区分别采用(1)中的赛制决出赛区冠军后,再进行一场总冠军赛,共要进行多少场比赛?
在学校国庆文艺晚会上,有三对教师夫妇参加表演节目,要求每人只能参加一个单项表演节目.按节目组节目编排要求,男教师的节目不能相邻,且夫妻教师的节目也不能相邻,则该6名教师表演的节目的不同编排顺序共有______ 种.(用数字填写答案)
有5盆互不相同的菊花,其中2盆为白色,2盆为黄色,1盆为红色,现要摆成一排,要求红色菊花在中间,白色菊花不相邻,黄色菊花也不相邻,则共有____种不同的摆放方法(用数字作答).