- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 排列与排列数公式
- + 排列应用题
- 全排列问题
- 元素(位置)有限制的排列问题
- 相邻问题的排列问题
- 不相邻排列问题
- 其他排列模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
5名师生站成一排照相留念,其中教师1人,男生2人,女生2人.
(1)求两名女生相邻而站的概率;
(2)求教师不站中间且女生不站两端的概率.
(1)求两名女生相邻而站的概率;
(2)求教师不站中间且女生不站两端的概率.
有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.
(1)全体排成一行,其中男生必须排在一起;
(2)全体排成一行,男、女各不相邻;
(3)全体排成一行,其中甲不在最左边,乙不在最右边;
(4)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.
(1)全体排成一行,其中男生必须排在一起;
(2)全体排成一行,男、女各不相邻;
(3)全体排成一行,其中甲不在最左边,乙不在最右边;
(4)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.
山城农业科学研究所将5种不同型号的种子分别试种在5块并成一排的试验田里,其中
两型号的种子要求试种在相邻的两块试验田里,且均不能试种在两端的试验田里,则不同的试种方法数为 ( )

A.12 | B.24 | C.36 | D.48 |
从6名学生中选4人分别从事A、B、C、D四项不同的工作,若甲、乙两人不能从事A工作,则不同的选派方案共有 ( )
A.280 | B.240 | C.180 | D.96 |
将现有
名男生和
名女生站成一排照相.(用数字作答)
(1)两女生相邻,有多少种不同的站法?
(2)两名女生不相邻,有多少种不同的站法?
(3)女生甲不在左端,女生乙不在右端,有多少种不同的站法?
(4)女生甲要在女生乙的右方(可以不相邻)有多少种不同的站法?


(1)两女生相邻,有多少种不同的站法?
(2)两名女生不相邻,有多少种不同的站法?
(3)女生甲不在左端,女生乙不在右端,有多少种不同的站法?
(4)女生甲要在女生乙的右方(可以不相邻)有多少种不同的站法?



