- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 分类加法计数原理
- 两个计数原理的综合应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
无偿献血是践行社会主义核心价值观的具体行动,需要在报名的2名男教师和6名女教师中,选取5人参加无偿献血,要求男、女教师都有,则不同的选取方法的种数为___________.(结果用数值表示)
已知一个口袋内有4个不同的红球,6个不同的白球.
(1)从中任取4个球,红球的个数不比白球的个数少的取法有多少种?
(2)从中任取5个球,记取到红球的个数为X,求X的分布列和数学期望.
(1)从中任取4个球,红球的个数不比白球的个数少的取法有多少种?
(2)从中任取5个球,记取到红球的个数为X,求X的分布列和数学期望.
某校在高二年级开设选修课,其中数学选修课开三个班,选课结束后,有4名同学要求改修数学,但每班至多可再接收2名同学,那么不同的分配方案有 ( )
A.72种 | B.54种 | C.36种 | D.18种 |
某班举行的联欢会由5个节目组成,节目演出顺序要求如下: 节目甲不能排在第一个,并且节目甲必须和节目乙相邻.则该班联欢会节目演出顺序的编排方案共有____种.
在第二届乌镇互联网大会中, 为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在
、
、
三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有



A.![]() | B.![]() |
C.![]() | D.![]() |
将甲、乙、丙、丁、戊共5人分配到A、B、C、D共4所学校,每所学校至少一人,且甲不去A学校,则不同的分配方法有
A.72种 | B.108种 | C.180种 | D.360种 |