- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 分类加法计数原理
- 两个计数原理的综合应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同样长短的小木棍.如图,是利用算筹表示数1~9的一种方法.例如:137可表示为“
”,26可表示为“
”.现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1~9这9个数字表示三位数的个数为( )




A.10 | B.20 | C.36 | D.38 |
把分别写有1,2,3,4,5的五张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么不同的分法种数为______
用数字作答
.


甲、乙、丙 3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是
A.210 | B.84 | C.343 | D.336 |
某小区有排成一排的
个车位,现有
辆不同型号的车需要停放,如果要求剩下的
个车位连在一起,那么不同的停放方法的种数为( )



A.![]() | B.![]() | C.![]() | D.![]() |
一个盒中装有大小相同的2个黑球,2个白球,从中任取一球,若是白球则取出来,若是黑球则放回盒中,直到把白球全部取出,则在此过程中恰有两次取到黑球的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
如图所示,玩具计数算盘的三档上各有7个算珠,现将每档算珠分为左右两部分,左侧的每个算珠表示数2,右侧的每个算珠表示数1(允许一侧无珠),记上、中、下三档的数字和分别为
,
,
. 例如,图中上档的数字和
. 若
,
,
成等差数列,则不同的分珠计数法有____ 种.








有4个不同的小球,四个不同的盒子,把小球全部放入盒内.
(1)恰有一个盒内有2个小球,有多少种放法?
(2)恰有两个盒内不放小球,有多少种放法?
(1)恰有一个盒内有2个小球,有多少种放法?
(2)恰有两个盒内不放小球,有多少种放法?
某学校4位同学参加数学知识竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得30分,答错得一30分;选乙题答对得10分,答错得一10分.若4位同学的总分为0,求这4位同学有多少种不同的得分情况?