- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 加法原理与乘法原理
- 分类加法计数原理
- 两个计数原理的综合应用
- 排列
- 组合
- 二项式定理
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
7人站成两排队列,前排3人,后排4人。现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为_________
一个三位自然数百位,十位,个位上的数字依次为
,当且仅当
时称为“凹数”(如213),若
,且
互不相同,则这个三位数为“凹数”的有( )个




A.6 | B.7 | C.8 | D.9 |
21个人按照以下规则表演节目:他们围坐成一圈,按顺序从1到3循环报数,报数字“3”的人出来表演节目,并且表演过的人不再参加报数.那么在仅剩两个人没有表演过节目的时候,共报数的次数为( )
A.19 | B.38 | C.51 | D.57 |
甲与其四位同事各有一辆私家车,车牌尾数分别是
,为遵守当地某月
日至
日
天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案种数为( )




A.![]() | B.![]() | C.![]() | D.![]() |
现在要安排6名大学生到工厂去做3项不同的实习工作,每项工作需要2人,则甲、乙二人必须做同一项工作,而丙、丁二人不能做同一项工作的概率为__________.
如图所示,某货场有两堆集装箱,一堆2个,一堆3个,现需要全部装运,每次只能从其中一堆取最上面的一个集装箱,则在装运的过程中不同取法的种数是( )


A.6 | B.10 | C.12 | D.24 |
如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 ( )


A.24 | B.18 | C.36 | D.10 |