- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 加法原理与乘法原理
- 分类加法计数原理
- 两个计数原理的综合应用
- 排列
- 组合
- 二项式定理
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,将四棱锥S-ABCD的每一个顶点涂上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么有多少种不同的涂色方法?

若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:2019+100=2119,则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为2019的“简单的”有序对的个数是( )
A.100 | B.96 | C.60 | D.30 |
某电话局的电话号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为
A.20 | B.25 | C.32 | D.60 |
若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是________.
将一个四面体ABCD的六条棱上涂上红、黄、白三种颜色,要求共端点的棱不能涂相同颜色,则不同的涂色方案有( )
A.1种 | B.3种 | C.6种 | D.9种 |