- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- + 计数原理
- 加法原理与乘法原理
- 排列
- 组合
- 二项式定理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,将四棱锥S-ABCD的每一个顶点涂上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么有多少种不同的涂色方法?

设a1,a2,…,an是1,2,…,n的一个排列,把排在ai的左边且比ai小的数的个数称为ai的顺序数(i=1,2,…,n).如在排列6,4,5,3,2,1中,5的顺序数为1,3的顺序数为0,则在由1,2,3,4,5,6,7,8这八个数字构成的全排列中,同时满足8的顺序数为2,7的顺序数为3,5的顺序数为3的不同排列的种数为多少?(结果用数字表示)
有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.
(1)选5人排成一排;
(2)排成前后两排,前排3人,后排4人;
(3)全体排成一排,女生必须站在一起;
(4)全体排成一排,男生互不相邻;
(5)全体排成一排,其中甲不站最左边,也不站最右边;
(6)全体排成一排,其中甲不站最左边,乙不站最右边.
(1)选5人排成一排;
(2)排成前后两排,前排3人,后排4人;
(3)全体排成一排,女生必须站在一起;
(4)全体排成一排,男生互不相邻;
(5)全体排成一排,其中甲不站最左边,也不站最右边;
(6)全体排成一排,其中甲不站最左边,乙不站最右边.
如图所示的几何体是由一个正三棱锥
与正三棱柱
组合而成,现用3种不同颜色对这个几何体的表面染色(底面
不涂色),要求相邻的面均不同色,则不同的染色方案共有_______种.




将杨辉三角中的奇数换成1,偶数换成0,便可以得到如图的“0-1三角”.在“0-1三角”中,从第1行起,设第n(n∈N+)次出现全行为1时,1的个数为an,则a3等于 ( )


A.26 | B.27 |
C.7 | D.8 |
若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:2019+100=2119,则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为2019的“简单的”有序对的个数是( )
A.100 | B.96 | C.60 | D.30 |