- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- + 众数
- 计算几个数的众数
- 根据众数计算参数
- 由茎叶图计算众数
- 用众数的代表意义解决实际问题
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10天,每天新增疑似病例不超过7人”,根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )
A.甲地:总体均值为3,中位数为4 |
B.乙地:总体均值为1,总体方差大于0 |
C.丙地:总体均值为2,总体方差为3 |
D.丁地:中位数为2,众数为3 |
一组数据从小到大的顺序排列为1,2,2,
,5,10,其中
,已知该组数据的中位数是众数的
倍,则该组数据的标准差为( )



A.9 | B.4 | C.3 | D.2 |
在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是
A.众数 | B.平均数 | C.中位数 | D.标准差 |
篮球运动员甲在某赛季前15场比赛的得分如表:
则这15场得分的中位数和众数分别为( )
得分 | 8 | 13 | 18 | 22 | 28 | 33 | 37 |
频数 | 1 | 3 | 4 | 1 | 3 | 1 | 2 |
则这15场得分的中位数和众数分别为( )
A.22,18 | B.18,18 | C.22,22 | D.20,18 |
对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图如图所示,则该样本中的中位数、众数、极差分别是( )
1 | 2 | 5 | | | | | | |
2 | 0 | 2 | 3 | 3 | | | | |
3 | 1 | 2 | 4 | 4 | 8 | 9 | | |
4 | 5 | 5 | 5 | 7 | 7 | 8 | 8 | 9 |
5 | 0 | 0 | 1 | 1 | 4 | 7 | 9 | |
6 | 1 | 7 | 8 | | | | | |
A.46,45,56 | B.46,45,53 |
C.47,45,56. | D.45,47,53 |
某工厂10名工人某天生产同一型号零件的件数分别是15,17,14,10,15,17,17,16,14,12,则这组数据的众数为( )
A.17 | B.16 | C.15 | D.14.7 |
甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:
某同学分析上表后得到如下结论:
①甲、乙两班学生的平均成绩相同;
②乙班优秀的人数少于甲班优秀的人数(竞赛得分
分为优秀);
③甲、乙两班成绩为85分的学生人数比成绩为其他值的学生人数多;
④乙班成绩波动比甲班小.
其中正确结论有( )
班级 | 参赛人数 | 平均数 | 中位数 | 众数 | 方差 |
甲 | 45 | 83 | 86 | 85 | 82 |
乙 | 45 | 83 | 84 | 85 | 133 |
某同学分析上表后得到如下结论:
①甲、乙两班学生的平均成绩相同;
②乙班优秀的人数少于甲班优秀的人数(竞赛得分

③甲、乙两班成绩为85分的学生人数比成绩为其他值的学生人数多;
④乙班成绩波动比甲班小.
其中正确结论有( )
A.1个 | B.2个 | C.3个 | D.4个 |