- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 茎叶图的优缺点与适用对象
- 绘制茎叶图
- 补全茎叶图中的数据
- + 观察茎叶图比较数据的特征
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等制划分标准为:85分及以上,记为
等;分数在
内,记为
等;分数在
内,记为
等;60分以下,记为
等.同时认定
为合格,
为不合格.已知甲,乙两所学校学生的原始成绩均分布在
内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照
的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为
的所有数据茎叶图如图2所示.

(Ⅰ)求图1中
的值,并根据样本数据比较甲乙两校的合格率;
(Ⅱ)在选取的样本中,从甲,乙两校
等级的学生中随机抽取3名学生进行调研,用
表示所抽取的3名学生中甲校的学生人数,求随机变量
的分布列和数学期望.












(Ⅰ)求图1中

(Ⅱ)在选取的样本中,从甲,乙两校



某学校在校艺术节活动中,有24名学生参加了学校组织的唱歌比赛,他们比赛的成绩的茎叶图如图所示,将他们的比赛成绩从低到高编号为1-24号,再用系统抽样方法抽出6名同学周末到某音乐学院参观学习.则样本中比赛成绩不超过85分的学生人数为( )
6 | 9 | | | | | | | | | |
7 | 0 | 1 | 2 | 2 | 5 | | | | | |
8 | 1 | 3 | 6 | 6 | 7 | 8 | 8 | 9 | 9 | 9 |
9 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 7 | | |
A.1 | B.2 | C.3 | D.不确定 |
某企业招聘大学毕业生,经过综合测试,录用了14名女生和6名男生,这20名学生的测试成绩如茎叶图所示(单位:分),记成绩不小于80分者为
等,小于80分者为
等.

(1)求女生成绩的中位数及男生成绩的平均数;
(2)如果用分层抽样的方法从
等和
等中共抽取5人组成“创新团队”,则从
等和
等中分别抽几人?
(3)在(2)问的基础上,现从该“创新团队”中随机抽取2人,求至少有1人是
等的概率.



(1)求女生成绩的中位数及男生成绩的平均数;
(2)如果用分层抽样的方法从




(3)在(2)问的基础上,现从该“创新团队”中随机抽取2人,求至少有1人是

为备战2016年奥运会,甲、乙两位射击选手进行了强化训练.现分别从他们的强化训练期间的若干次平均成绩中随机抽取8次,记录如下:
甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3
乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5
(1)画出甲、乙两位选手成绩的茎叶图;
(2)现要从中选派一人参加奥运会封闭集训,从统计学角度,你认为派哪位选手参加合理?简单说明理由;
(3)若将频率视为概率,对选手乙在今后的三次比赛成绩进行预测,记这三次成绩中不低于8.5分的次数为ξ,求ξ的分布列及均值E(ξ).
甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3
乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5
(1)画出甲、乙两位选手成绩的茎叶图;
(2)现要从中选派一人参加奥运会封闭集训,从统计学角度,你认为派哪位选手参加合理?简单说明理由;
(3)若将频率视为概率,对选手乙在今后的三次比赛成绩进行预测,记这三次成绩中不低于8.5分的次数为ξ,求ξ的分布列及均值E(ξ).
某市为准备参加省中学生运动会,对本市甲、乙两个田径队的所有跳高运动员进行了测试,将全体运动员的成绩绘制成频率分布直方图.同时用茎叶图表示甲,乙两队运动员本次测试的成绩(单位:
,且均为整数),由于某些原因,茎叶图中乙队的部分数据丢失,但已知所有运动员中成绩在
以上(包括
)的只有两个人,且均在甲队.规定:跳高成绩在
以上(包括
)定义为“优秀”.
(1)求甲,乙两队运动员的总人数
及乙队中成绩在
(单位:
)内的运动人数
;
(2)在甲,乙两队所有成绩在
以上的运动员中随机选取
人,已知至少有
人成绩为“优秀”,求两人成绩均“优秀”的概率;
(3)在甲,乙两队中所有的成绩为“优秀”的运动员中随机选取
人参加省中学生运动会正式比赛,求所选取运动员中来自甲队的人数
的分布列及期望.





(1)求甲,乙两队运动员的总人数




(2)在甲,乙两队所有成绩在



(3)在甲,乙两队中所有的成绩为“优秀”的运动员中随机选取



为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示,甲的成绩中有一个数的个位数字模糊,在茎叶图中用
表示.(把频率当作概率).

(1)假设
,现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?
(2)假设数字
的取值是随机的,求乙的平均分高于甲的平均分的概率.


(1)假设

(2)假设数字

中国诗词大会节目是央视首档全民参与的诗词节目,节目以“赏中华诗词、寻文化基因、品生活之美”为基本宗旨,力求通过对诗词知识的比拼及赏析,带动全民重温那些曾经学过的古诗词,分享诗词之美,感受诗词之趣,从古人的智慧和情怀中汲取营养,涵养心灵.如图是2016年中国诗词大会中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中
为数字
中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为
,
,则一定有( )






A.![]() | B.![]() | C.![]() | D.![]() ![]() ![]() |
哈师大附中高三学年统计甲、乙两个班级一模数学分数,每个班级20名同学,现有甲、乙两班本次考试数学分数如下列茎叶图所示:

(I)根据基叶图求甲、乙两班同学数学分数的中位数,并将乙班同学的分数的频率分布直方图填充完整;

(Ⅱ)根据基叶图比较在一模考试中,甲、乙两班同学数学分数的平均水平和分数的分散程度(不要求计算出具体值,给出结论即可)
(Ⅲ)若规定分数在
的成绩为良好,分数在
的成绩为优秀,现从甲、乙两班成绩为优秀的同学中,按照各班成绩为优秀的同学人数占两班总的优秀人数的比例分层抽样,共选出12位同学参加数学提优培训,求这12位同学中恰含甲、乙两班所有140分以上的同学的概率.

(I)根据基叶图求甲、乙两班同学数学分数的中位数,并将乙班同学的分数的频率分布直方图填充完整;

(Ⅱ)根据基叶图比较在一模考试中,甲、乙两班同学数学分数的平均水平和分数的分散程度(不要求计算出具体值,给出结论即可)
(Ⅲ)若规定分数在


某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图如图所示,已知甲得分的极差为32,乙得分的平均值为24,则下列结论错误的是


A.![]() | B.![]() |
C.乙得分的中位数和众数都为26 | D.乙得分的方差小于甲得分的方差 |