- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 茎叶图的优缺点与适用对象
- 绘制茎叶图
- 补全茎叶图中的数据
- + 观察茎叶图比较数据的特征
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
将甲、乙两名篮球运动员在五场比赛中所得的分数的数据绘制成茎叶图,如图所示,分别计算在这五场比赛中甲、乙得分的平均数与方差,并据此判断谁的平均水平更好,谁的稳定性更好? 

为了调查观众对某热播电视剧的喜爱程度,某电视台在甲、乙两地各随机抽取了8名观众作问卷调查,得分统计结果如图所示:

(1)计算甲、乙两地被抽取的观众问卷的平均得分;
(2)计算甲、乙两地被抽取的观众问卷得分的方差;
(3)若从甲地被抽取的8名观众中再邀请2名进行深入调研,求这2名观众中恰有1人的问卷调查成绩在90分以上的概率.

(1)计算甲、乙两地被抽取的观众问卷的平均得分;
(2)计算甲、乙两地被抽取的观众问卷得分的方差;
(3)若从甲地被抽取的8名观众中再邀请2名进行深入调研,求这2名观众中恰有1人的问卷调查成绩在90分以上的概率.
如图所示的茎叶图记录了甲、乙两个学习小组各5名同学在某次考试中的数学成绩,若这两组数据的中位数相等,且平均值也相同,则
和
的值分别为 ( )




A.3,2 | B.2,3 | C.2,4 | D.3,4 |
对某同学的7次数学测试成绩进行统计,作出的茎叶图如图所示,给出关于该同学数学成绩的以下说法:

①中位数为84;②众数为83;
③平均数为85;④极差为16;
其中,正确说法的序号是__________.

①中位数为84;②众数为83;
③平均数为85;④极差为16;
其中,正确说法的序号是__________.
某赛季甲、乙两名篮球运动员每场比赛得分如茎叶图所示,则下列说法中正确的是( )

①甲比乙发挥更稳定
②乙比甲发挥更稳定
③乙的得分值的中位数是36
④甲、乙得分值的分布都呈“单峰”状态

①甲比乙发挥更稳定
②乙比甲发挥更稳定
③乙的得分值的中位数是36
④甲、乙得分值的分布都呈“单峰”状态
A.①③ | B.②③ | C.①② | D.②③④ |




A.甲大于乙 | B.乙大于甲 | C.甲、乙相等 | D.无法确定 |
甲、乙两位同学在5次考试中的数学成绩用茎叶图表示如图,中间一列的数字表示数学成绩的十位数字,两边的数字表示数学成绩的个位数字,若甲、乙两人的平均成绩分别是
,则下列说法正确的是



A.![]() | B.![]() |
C.![]() | D. ![]() |
中国科学院亚热带农业生态研究所2017年10月16日正式发布一种水稻新种质,株高可达2.2米以上,具有高产、抗倒伏、抗病虫害、酎淹涝等特点,被认为开启了水稻研制的一扇新门.以下是
两组实验田中分别抽取的6株巨型稻的株高,数据如下(单位:米).
: 1.7 1.8 1.9 2.2 2.4 2.5
: 1.8 1.9 2.0 2.0 2.4 2.5
(1)绘制
两组数据的茎叶图,并求出
组数据的中位数和
组数据的方差;
(2)从
组样本中随机抽取2株,请列出所有的基本事件,并求至少有一株超过
组株高平均值的概率.



(1)绘制



(2)从


下面的茎叶图记录了甲、乙两代表队各10名同学在一次英语听力比赛中的成绩(单位:分).已知甲代表队数据的中位数为76,乙代表队数据的平均数是75.

(1)求
的值;(直接写出结果,不必写过程)
(2)若分别从甲、乙两队随机各抽取1名成绩不低于80分的学生,求抽到的学生中,甲队学生成绩不低于乙队学生成绩的概率.

(1)求

(2)若分别从甲、乙两队随机各抽取1名成绩不低于80分的学生,求抽到的学生中,甲队学生成绩不低于乙队学生成绩的概率.