- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- + 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间
内的频率之比为
.

(1)求这些产品质量指标值落在区间
内的频率;
(2)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间
内的产品件数为
,求
的分布列与数学期望.



(1)求这些产品质量指标值落在区间

(2)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间



为了解某市居民用水情况,通过抽样,获得了
位居民某年的月均用水量(单位:吨),将数据分成
组,绘制了如图所示的频率分布直方图,由图可知,居民月均用水量的众数、中位数的估计值分别为( )





A.![]() | B.![]() | C.![]() | D.![]() |
某校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是
,样本数据分组为
,
,
,
,
,根据直方图,这200名学生中每周的自习时间不少于24小时的人数是( )








A.76 | B.92 | C.108 | D.114 |
为了解学生身高情况,某校以
的比例对全校1000名学生按性别进行分层抽样调查,已知男女比例为
,测得男生身高情况的频率分布直方图(如图所示):

(1)计算所抽取的男生人数,并估计男生身高的中位数(保留两位小数);
(2)从样本中身高在
之间的男生中任选2人,求至少有1人身高在
之间的概率.



(1)计算所抽取的男生人数,并估计男生身高的中位数(保留两位小数);
(2)从样本中身高在


据统计,截至2016年底全国微信注册用户数量已经突破9.27亿.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从某市大学生中随机抽取100位同学进行了抽样调查,结果如下:

(1)求
,
,
的值及样本中微信群个数超过12的概率;
(2)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过12的概率;
(3)以(1)中的频率作为概率,若从全市大学生中随机抽取3人,记
表示抽到的是微信群个数超过12的人数,求
的分布列及数学期望
.

(1)求



(2)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过12的概率;
(3)以(1)中的频率作为概率,若从全市大学生中随机抽取3人,记



在某单位的职工食堂中,食堂每天以
元/个的价格从面包店购进面包,然后以
元/个的价格出售.如果当天卖不完,剩下的面包以
元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了
个面包,以
(单位:个,
)表示面包的需求量,
(单位:元)表示利润.

(Ⅰ)求
关于
的函数解析式;
(Ⅱ)求食堂每天面包需求量的中位数;
(Ⅲ)根据直方图估计利润
不少于
元的概率;








(Ⅰ)求


(Ⅱ)求食堂每天面包需求量的中位数;
(Ⅲ)根据直方图估计利润


2017年《诗词大会》火爆荧屏,某校为此举办了一场主题为“爱诗词、爱祖国”的诗词知识竞赛,从全校参赛的600名学生中抽出60人的成绩作为样本.对这60名学生的成绩进行统计,并按
,
分组,得到如图所示的频率分布直方图.
(Ⅰ)若规定60分以上(含60分)为及格,试估计全校及格人数;
(Ⅱ)若同一组数据用该组区间的中点值代表,估计参加这次知识竞赛的学生的平均成绩;
(Ⅲ)估计参加这次知识竞赛的学生成绩的中位数(结果保留一位小数).


(Ⅰ)若规定60分以上(含60分)为及格,试估计全校及格人数;
(Ⅱ)若同一组数据用该组区间的中点值代表,估计参加这次知识竞赛的学生的平均成绩;
(Ⅲ)估计参加这次知识竞赛的学生成绩的中位数(结果保留一位小数).

某校从参加高三化学得分训练的学生中随机抽出60名学生,将其化学成绩(均为整数)分成六段
、
、…、
后得到部分频率分布直方图(如图).
观察图形中的信息,回答下列问题:

(1)求分数在
内的频率,并补全频率分布直方图;
(2)据此估计本次考试的平均分;
(3)若从60名学生中随机抽取2人,抽到的学生成绩在
内记0分,在
内记1分,在
内记2分,用
表示抽取结束后的总记分,求
的分布列.



观察图形中的信息,回答下列问题:

(1)求分数在

(2)据此估计本次考试的平均分;
(3)若从60名学生中随机抽取2人,抽到的学生成绩在





2017年《诗词大会》火爆荧屏,某校为此举办了一场主题为“爱诗词、爱祖国”的诗词知识竞赛,从参赛的全体学生中抽出60人的成绩作为样本.对这60名学生的成绩进行统计,并按
,
,
分组,得到如图所示的频率分布直方图.
(Ⅰ)若同一组数据用该组区间的中点值代表,估计参加这次知识竞赛的学生的平均成绩;
(Ⅱ)估计参加这次知识竞赛的学生成绩的中位数(结果保留一位小数);
(Ⅲ)若规定80分以上(含80分)为优秀,用频率估计概率,从全体参赛学生中随机抽取3名,记其中成绩优秀的人数为
,求
的分布列与期望.



(Ⅰ)若同一组数据用该组区间的中点值代表,估计参加这次知识竞赛的学生的平均成绩;
(Ⅱ)估计参加这次知识竞赛的学生成绩的中位数(结果保留一位小数);
(Ⅲ)若规定80分以上(含80分)为优秀,用频率估计概率,从全体参赛学生中随机抽取3名,记其中成绩优秀的人数为



某班20名同学某次数学测试的成绩可绘制成如下茎叶图,由于其中部分数据缺失,故打算根据茎叶图中的数据估计全班同学的平均成绩.

(1)完成频率分布直方图;
(2)根据(1)中的频率分布直方图估计全班同学的平均成绩
(同一组中的数据用该组区间的中点值作代表);
(3)设根据茎叶图计算出的全班的平均成绩为
,并假设
,且
各自取得每一个可能值的机会相等,在(2)的条件下,求概率
.

(1)完成频率分布直方图;
(2)根据(1)中的频率分布直方图估计全班同学的平均成绩

(3)设根据茎叶图计算出的全班的平均成绩为



