从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间内的频率之比为

(1)求这些产品质量指标值落在区间内的频率;
(2)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间内的产品件数为,求的分布列与数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
为了解某市居民用水情况,通过抽样,获得了位居民某年的月均用水量(单位:吨),将数据分成组,绘制了如图所示的频率分布直方图,由图可知,居民月均用水量的众数、中位数的估计值分别为(  )
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
某校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是,样本数据分组为,根据直方图,这200名学生中每周的自习时间不少于24小时的人数是(  )
A.76B.92C.108D.114
当前题号:3 | 题型:单选题 | 难度:0.99
为了解学生身高情况,某校以的比例对全校1000名学生按性别进行分层抽样调查,已知男女比例为,测得男生身高情况的频率分布直方图(如图所示):

(1)计算所抽取的男生人数,并估计男生身高的中位数(保留两位小数);
(2)从样本中身高在之间的男生中任选2人,求至少有1人身高在之间的概率.
当前题号:4 | 题型:解答题 | 难度:0.99
据统计,截至2016年底全国微信注册用户数量已经突破9.27亿.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从某市大学生中随机抽取100位同学进行了抽样调查,结果如下:

(1)求的值及样本中微信群个数超过12的概率;
(2)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过12的概率;
(3)以(1)中的频率作为概率,若从全市大学生中随机抽取3人,记表示抽到的是微信群个数超过12的人数,求的分布列及数学期望.
当前题号:5 | 题型:解答题 | 难度:0.99
在某单位的职工食堂中,食堂每天以元/个的价格从面包店购进面包,然后以元/个的价格出售.如果当天卖不完,剩下的面包以元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了个面包,以(单位:个,)表示面包的需求量,(单位:元)表示利润.

(Ⅰ)求关于的函数解析式;
(Ⅱ)求食堂每天面包需求量的中位数;
(Ⅲ)根据直方图估计利润不少于元的概率;
当前题号:6 | 题型:解答题 | 难度:0.99
2017年《诗词大会》火爆荧屏,某校为此举办了一场主题为“爱诗词、爱祖国”的诗词知识竞赛,从全校参赛的600名学生中抽出60人的成绩作为样本.对这60名学生的成绩进行统计,并按分组,得到如图所示的频率分布直方图.
(Ⅰ)若规定60分以上(含60分)为及格,试估计全校及格人数;
(Ⅱ)若同一组数据用该组区间的中点值代表,估计参加这次知识竞赛的学生的平均成绩;
(Ⅲ)估计参加这次知识竞赛的学生成绩的中位数(结果保留一位小数).
当前题号:7 | 题型:解答题 | 难度:0.99
某校从参加高三化学得分训练的学生中随机抽出60名学生,将其化学成绩(均为整数)分成六段、…、后得到部分频率分布直方图(如图).
观察图形中的信息,回答下列问题:

(1)求分数在内的频率,并补全频率分布直方图;
(2)据此估计本次考试的平均分;
(3)若从60名学生中随机抽取2人,抽到的学生成绩在内记0分,在内记1分,在内记2分,用表示抽取结束后的总记分,求的分布列.
当前题号:8 | 题型:解答题 | 难度:0.99
2017年《诗词大会》火爆荧屏,某校为此举办了一场主题为“爱诗词、爱祖国”的诗词知识竞赛,从参赛的全体学生中抽出60人的成绩作为样本.对这60名学生的成绩进行统计,并按分组,得到如图所示的频率分布直方图.
(Ⅰ)若同一组数据用该组区间的中点值代表,估计参加这次知识竞赛的学生的平均成绩;
(Ⅱ)估计参加这次知识竞赛的学生成绩的中位数(结果保留一位小数);
(Ⅲ)若规定80分以上(含80分)为优秀,用频率估计概率,从全体参赛学生中随机抽取3名,记其中成绩优秀的人数为,求的分布列与期望.
当前题号:9 | 题型:解答题 | 难度:0.99
某班20名同学某次数学测试的成绩可绘制成如下茎叶图,由于其中部分数据缺失,故打算根据茎叶图中的数据估计全班同学的平均成绩.

(1)完成频率分布直方图;
(2)根据(1)中的频率分布直方图估计全班同学的平均成绩 (同一组中的数据用该组区间的中点值作代表);
(3)设根据茎叶图计算出的全班的平均成绩为,并假设,且各自取得每一个可能值的机会相等,在(2)的条件下,求概率.
当前题号:10 | 题型:解答题 | 难度:0.99