- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 普查与抽样
- 总体与样本
- 系统抽样
- + 分层抽样
- 分层抽样的特征及适用条件
- 抽样比、样本总量、各层总数、总体容量的计算
- 分层抽样的概率
- 设计分层抽样过程
- 三种抽样方法的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某工厂生产
三咱不同型号的产品,产品数量之比依次为
,现用分层抽样的方法抽出一个容量为
的样本,样本中
型号产品有16件,
型号产品有40件,则( )





A.![]() | B.![]() | C.![]() | D.![]() |
为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从中随机抽取了100名考生的成绩(得分均为整数,满足100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.
(1)求
的值及随机抽取一考生恰为优秀生的概率;
(2)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;
(3)在第(2)问抽取的优秀生中指派2名学生担任负责人,求至少一人的成绩在
的概率.
分组 | 频数 | 频率 |
![]() | 5 | 0.05 |
![]() | ![]() | 0.20 |
![]() | 35 | ![]() |
![]() | 25 | 0.25 |
![]() | 15 | 0.15 |
合计 | 100 | 1.00 |
(1)求

(2)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;
(3)在第(2)问抽取的优秀生中指派2名学生担任负责人,求至少一人的成绩在

某单位有职工
人,其中青年职工
人,中年职工
人,老年职工
人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为
人,则样本容量为 .





某地区以“绿色出行”为宗旨开展“共享单车”业务.该地区某高级中学一兴趣小组由20名高二级学生和15名高一级学生组成,现采用分层抽样的方法抽取7人,组成一个体验小组去市场体验“共享单车”的使用.问:
(Ⅰ)应从该兴趣小组中抽取高一级和高二级的学生各多少人;
(Ⅱ)已知该地区有
,
两种型号的“共享单车”,在市场体验中,该体验小组的高二级学生都租
型车,高一级学生都租
型车.
(1)如果从组内随机抽取3人,求抽取的3人中至少有2人在市场体验过程中租
型车的概率;
(2)已知该地区
型车每小时的租金为1元,
型车每小时的租金为1.2元,设
为从体验小组内随机抽取3人得到的每小时租金之和,求
的数学期望.
(Ⅰ)应从该兴趣小组中抽取高一级和高二级的学生各多少人;
(Ⅱ)已知该地区有




(1)如果从组内随机抽取3人,求抽取的3人中至少有2人在市场体验过程中租

(2)已知该地区




某公司生产三种型号的轿车,产量分别为1600辆、6000辆和2000辆,为检验公司的产品质量,现从这三种型号的轿车中抽取48辆进行检验,这三种型号的轿车依次应抽取 ( )
A.16,16,16 | B.12,27,9 | C.8,30,10 | D.4,33,11 |
2014年3月,为了调查教师对第十二届全国人民代表大会二次会议的了解程度,安庆市拟采用分层抽样的方法从
三所不同的中学抽取60名教师进行调查.已知
学校中分别有180,270,90名教师,则从
学校中应抽取的人数为()



A.10 | B.12 | C.18 | D.24 |
葫芦岛市交通局为了解机动车驾驶员对交通法规的知晓情况,对渤海、丰乐、安宁、天正四个社区做分层抽样调查.其中渤海社区有驾驶员96人.若在渤海、丰乐、安宁、天正四个社区抽取驾驶员的人数分别为12,21,25,43,则丰乐、安宁、天正三个社区驾驶员人数是多少( )
A.101 | B.808 | C.712 | D.89 |
某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,现抽取一个容量为30人的样本,则高级职称人数应为_____________.
(2014年苏州B2)学校进行体质抽测,计划在高中三个年级中共抽取
人,已知高一、高二、高三学生数比例为
,则应在高一分配______个名额.

