- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某重要路段限速70km/h,现对通过该路段的n辆汽车的车速进行检测,统计并绘成频率分布直方图(如图)若速度在60km/h~70km/h之间的车辆为150辆,则这n辆汽车中车速高于限速的汽车有_____辆.

为了了解某次数学考试全校学生的得分情况,数学老师随机选取了若干名学生的成绩,并以
,
,…,
为分组,作出了如图所示的频率分布直方图.从该学校中随机选取一名学生,估计这名学生该次数学考试成绩在
内的概率.





(百校联盟2018届高三TOP20四月联考)某高中在今年的期末考试历史成绩中随机抽取
名考生的笔试成绩,作出其频率分布直方图如图所示,已知成绩在
中的学生有1名,若从成绩在
和
两组的所有学生中任取2名进行问卷调查,则2名学生的成绩都在
中的概率为







A.![]() | B.![]() |
C.![]() | D.![]() |
1895年,在英国伦敦有106块男性头盖骨被挖掘出土.经考证,这些头盖骨的主人死于1665~1666年的大瘟疫人类学家分别测量了这些头盖骨的宽度(单位:mm),数据如下:
146 141 139 140 145 141 142 131 142
140 144 140 138 139 147 139 141 137
141 132 140 140 141 143 134 146 134
142 133 149 140 140 143 143 149 136
141 143 143 141 138 136 138 144 136
145 143 137 142 146 140 148 140 140
139 139 144 138 146 153 158 135 132
148 142 145 145 121 129 143 148 138
148 152 143 140 141 145 148 139 136
141 140 139 149 146 141 142 144 137
153 148 144 138 150 148 138 145 145
142 143 143 148 141 145 141
则95%分位数是________mm.
146 141 139 140 145 141 142 131 142
140 144 140 138 139 147 139 141 137
141 132 140 140 141 143 134 146 134
142 133 149 140 140 143 143 149 136
141 143 143 141 138 136 138 144 136
145 143 137 142 146 140 148 140 140
139 139 144 138 146 153 158 135 132
148 142 145 145 121 129 143 148 138
148 152 143 140 141 145 148 139 136
141 140 139 149 146 141 142 144 137
153 148 144 138 150 148 138 145 145
142 143 143 148 141 145 141
则95%分位数是________mm.
某高中学校对全体学生进行体育达标测试,每人测试A,B两个项目,每个项目满分均为60分.从全体学生中随机抽取了100人,分别统计他们A,B两个项目的测试成绩,得到A项目测试成绩的频率分布直方图和B项目测试成绩的频数分布表如下:
B项目测试成绩频数分布表
将学生的成绩划分为三个等级,如下表:
(1)在抽取的100人中,求A项目等级为优秀的人数;
(2)已知A项目等级为优秀的学生中女生有14人,A项目等级为一般或良好的学生中女生有34人,试完成下列2×2列联表,并分析是否有95%以上的把握认为“A项目等级为优秀”与性别有关?
(3)将样本的概率作为总体的概率,并假设A项目和B项目测试成绩互不影响,现从该校学生中随机抽取1人进行调查,试估计其A项目等级比B项目等级高的概率.
参考数据:
参考公式K2=
,其中n=a+b+c+d.

B项目测试成绩频数分布表
分数区间 | 频数 |
[0,10) | 2 |
[10,20) | 3 |
[20,30) | 5 |
[30,40) | 15 |
[40,50) | 40 |
[50,60] | 35 |
将学生的成绩划分为三个等级,如下表:
分数 | [0,30) | [30,50) | [50,60] |
等级 | 一般 | 良好 | 优秀 |
(1)在抽取的100人中,求A项目等级为优秀的人数;
(2)已知A项目等级为优秀的学生中女生有14人,A项目等级为一般或良好的学生中女生有34人,试完成下列2×2列联表,并分析是否有95%以上的把握认为“A项目等级为优秀”与性别有关?
优秀 | 一般或良好 | 总计 |
男生 | | |
女生 | | |
总计 | | |
(3)将样本的概率作为总体的概率,并假设A项目和B项目测试成绩互不影响,现从该校学生中随机抽取1人进行调查,试估计其A项目等级比B项目等级高的概率.
参考数据:
P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参考公式K2=

某奶品生产企业于2015年对铁锌牛奶、酸牛奶、纯牛奶三个品种的牛奶的生产情况进行了统计,绘制了图1、图2的统计图,请根据图中信息解答下列问题:
(1)酸牛奶生产了多少万吨?把图1补充完整;酸牛奶在图2中所对应扇形的圆心角是多少度?
(2)由于市场的需求不断增长,2016年的生产量比2015年的生产量增长了20%,按照这样的增长速度,请你估计2017年酸牛奶的生产量是多少万吨.

(1)酸牛奶生产了多少万吨?把图1补充完整;酸牛奶在图2中所对应扇形的圆心角是多少度?
(2)由于市场的需求不断增长,2016年的生产量比2015年的生产量增长了20%,按照这样的增长速度,请你估计2017年酸牛奶的生产量是多少万吨.
某校2019届高三年级参加市高考模拟考试的学生有1000人,随机抽取了一个容量为200的学生总成绩(满分750分)的样本,各分数段人数如表所示:
(1)列出频率分布表;
(2)画出频率分布直方图;
(3)若本次模拟考试一本的预测分数线为550分,试估计该校的一本上线人数.
分数段 | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 20 | 30 | 80 | 40 | 30 |
(1)列出频率分布表;
(2)画出频率分布直方图;
(3)若本次模拟考试一本的预测分数线为550分,试估计该校的一本上线人数.
为推行“新课堂”教学法,某老师分别用传统教学和“新课堂”两种不同的教学方式在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出如图所示的茎叶图,若成绩大于70分为“成绩优良”.

(1)分别计算甲、乙两班的样本中,前10名成绩的平均分,并据此判断哪种教学方式的教学效果更佳;
(2)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
(3)从甲、乙两班40个样本中,成绩在60分以下(不含60分)的学生中任意选取2人,记ξ为所抽取的2人中来自乙班的人数,求ξ的分布列及数学期望.
附:K2=
(n=a+b+c+d),

(1)分别计算甲、乙两班的样本中,前10名成绩的平均分,并据此判断哪种教学方式的教学效果更佳;
(2)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
| 甲班 | 乙班 | 总计 |
成绩优良 | | | |
成绩不优良 | | | |
总计 | | | |
(3)从甲、乙两班40个样本中,成绩在60分以下(不含60分)的学生中任意选取2人,记ξ为所抽取的2人中来自乙班的人数,求ξ的分布列及数学期望.
附:K2=

P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
为开发出更适合消费者需求的房屋,某房地产策划部对2000名客户的需求进行了调查,并利用专业的软件进行统计后绘成如图所示的统计图:

(1)观察统计图,你认为房地产商应多开发平方________米的房屋;
(2)观察并计算2000名客户中需求面积在100~140平方米的人数是____________.

(1)观察统计图,你认为房地产商应多开发平方________米的房屋;
(2)观察并计算2000名客户中需求面积在100~140平方米的人数是____________.