- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
以最高气温位于各区间的频率代替最高气温位于该区间的概率.求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率代替最高气温位于该区间的概率.求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
在2018年初的高中教师信息技术培训中,经统计,哈尔滨市高中教师的培训成绩
,若已知
,则从哈市高中教师中任选一位教师,他的培训成绩大于
的概率为( )



A.![]() | B.![]() | C.![]() | D.![]() |
某人从某城市的南郊乘公交车前往北区火车站,由于交通拥挤,所需时间(单位:分钟)服从X~N(50,102),则他在时间段(30,70]内赶到火车站的概率为( )
A.0.6826 | B.0.9974 |
C.0.3174 | D.0.9544 |
一批灯泡的使用时间X(单位:小时)服从正态分布(10 000,4002),则这批灯泡使用时间超过10 800小时的概率是_________.
(1)设随机变量
服从正态分布
,
,则
______________;
(2)已知随机变量
服从正态分布
,且
,则
______________.




(2)已知随机变量



