- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
最近,“百万英雄”,“冲顶大会”等一些闯关答题类游戏风靡全国,既能答题,又能学知识,还能挣奖金。若某闯关答题一轮共有4类题型,选手从前往后逐类回答,若中途回答错误,立马淘汰只能观战;若能坚持到4类题型全部回答正确,就能分得现金并获得一枚复活币。每一轮闯关答题顺序为:1.文史常识类;2.数理常识类;3.生活常识类;4.影视艺术常识类,现从全省高中生中调查了100位同学的答题情况统计如下表:

(Ⅰ)现用样本的数据特征估算整体的数据特征,从全省高中生挑选4位同学,记
为4位同学获得奖金的总人数,求
的分布列和期望.
(Ⅱ)若王同学某轮闯关获得的复活币,系统会在下一轮游戏中自动使用,即下一轮重新进行闯关答题时,若王同学在某一类题型中回答错误,自动复活一次,视为答对该类题型。请问:仍用样本的数据特征估算王同学的数据特征,那么王同学在获得复活币的下一轮答题游戏中能够最终获得奖金的概率是多少?

(Ⅰ)现用样本的数据特征估算整体的数据特征,从全省高中生挑选4位同学,记


(Ⅱ)若王同学某轮闯关获得的复活币,系统会在下一轮游戏中自动使用,即下一轮重新进行闯关答题时,若王同学在某一类题型中回答错误,自动复活一次,视为答对该类题型。请问:仍用样本的数据特征估算王同学的数据特征,那么王同学在获得复活币的下一轮答题游戏中能够最终获得奖金的概率是多少?
高三某班有60名学生(其中女生有20名),三好学生占
,而且三好学生中女生占一半,现在从该班任选一名学生参加座谈会,则在已知没有选上女生的条件下,选上的是三好学生的概率是( )

A.![]() | B.![]() | C.![]() | D.![]() |
某校高一200名学生的期中考试语文成绩服从正态分布
,数学成绩的频数分布直方图如下:

(1)计算这次考试的数学平均分,并比较语文和数学哪科的平均分较高(假设数学成绩在频率分布直方图中各段是均匀分布的);
(2)如果成绩大于85分的学生为优秀,这200名学生中本次考试语文、数学优秀的人数大约各多少人?
(3)如果语文和数学两科都优秀的共有4人,从(2)中的这些同学中随机抽取3人,设三人中两科都优秀的有
人,求
的分布列和数学期望.
(附参考公式)若
,则
,


(1)计算这次考试的数学平均分,并比较语文和数学哪科的平均分较高(假设数学成绩在频率分布直方图中各段是均匀分布的);
(2)如果成绩大于85分的学生为优秀,这200名学生中本次考试语文、数学优秀的人数大约各多少人?
(3)如果语文和数学两科都优秀的共有4人,从(2)中的这些同学中随机抽取3人,设三人中两科都优秀的有


(附参考公式)若



某地市高二理科学生有
名,在一次调研测试中,数学成绩
服从正态分布
,已知
,若按成绩分层抽样的方式取
份试卷进行分析,则应从
分以上的试卷中抽取( )






A.![]() | B.![]() | C.![]() | D.![]() |
已知某校有甲、乙两个兴趣小组,其中甲组有2名男生、3名女生,乙组有3名男生、1名女生,学校计划从两兴趣小组中随机各选2名成员参加某项活动 .
(1)求选出的4名选手中恰好有1名女生的选派方法数;
(2)记X为选出的女选手的人数,求X的概率分布和数学期望.
(1)求选出的4名选手中恰好有1名女生的选派方法数;
(2)记X为选出的女选手的人数,求X的概率分布和数学期望.
袋中有三个白球,两个黑球,现每次摸出一个球,不放回地摸取两次,则在第一次摸到黑球的条件下,第二次摸到白球的概率为__________.