- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断两曲线交点的个数
- + 求两曲线的交点
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴为极轴建立极坐标系,曲线
的极坐标为
.
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)若曲线
和曲线
有三个公共点,求以这三个公共点为顶点的三角形的面积.







(1)求曲线


(2)若曲线


己知两点
,
,动点P在y轴上的摄影是H,且
,
(1)求动点P的轨迹方程;
(2)设直线
,
的两个斜率存在,分别记为
,
,若
,求点P的坐标;
(3)若经过点
的直线l与动点P的轨迹有两个交点为T、Q,当
时,求直线l的方程.



(1)求动点P的轨迹方程;
(2)设直线





(3)若经过点


在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴为极轴建立极坐标系,曲线
的极坐标为
.
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)若曲线
和曲线
有三个公共点,求以这三个公共点为顶点的三角形的面积.







(1)求曲线


(2)若曲线


给定椭圆
,称圆心在坐标原点
,半径为
的圆是椭圆
的“伴椭圆”,若椭圆
右焦点坐标为
,且过点
.
(1)求椭圆
的“伴椭圆”方程;
(2)在椭圆
的“伴椭圆”上取一点
,过该点作椭圆的两条切线
、
,证明:两线垂直;
(3)在双曲线
上找一点
作椭圆
的两条切线,分别交于切点
、
使得
,求满足条件的所有点
的坐标.







(1)求椭圆

(2)在椭圆




(3)在双曲线







已知椭圆
的两焦点分别为
,
,
是椭圆在第一象限内的一点,并满足
,过
作倾斜角互补的两直线
、
分别交椭圆于
、
两点.
(1)求
点坐标;
(2)当直线
经过点
时,求直线
的方程;
(3)求证直线
的斜率为定值.










(1)求

(2)当直线



(3)求证直线
