- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 圆的弦长与中点弦
- 已知圆的弦长求方程或参数
- 圆内接三角形的面积
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设点A为单位圆上一定点,求下列事件发生的概率:
(1)在该圆上任取一点B,使AB间劣弧长不超过
;
(2)在该圆上任取一点B,使弦AB的长度不超过
.
(1)在该圆上任取一点B,使AB间劣弧长不超过

(2)在该圆上任取一点B,使弦AB的长度不超过

已知集合M={(x,y)|x﹣3≤y≤x﹣1},N={P|PA≥
PB,A(﹣1,0),B(1,0)},则表示M∩N的图形面积为__.

“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦
尺,弓形高
寸,则阴影部分面积约为(注:
,
,1尺=10寸)( )






A.6.33平方寸 | B.6.35平方寸 |
C.6.37平方寸 | D.6.39平方寸 |
(本小题满分12分)已知圆C1:x2+y2=r2截直线x+y-
=0所得的弦长为
.抛物线C2:x2=2py(p>0)的焦点在圆C1上.
(1)求抛物线C2的方程;
(2)过点A(-1,0)的直线l与抛物线C2交于B,C两点,又分别过B、C两点作抛物线C2的切线,当两条切线互相垂直时,求直线l的方程.


(1)求抛物线C2的方程;
(2)过点A(-1,0)的直线l与抛物线C2交于B,C两点,又分别过B、C两点作抛物线C2的切线,当两条切线互相垂直时,求直线l的方程.