- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线的倾斜角与斜率
- 直线的方程
- + 直线的交点坐标与距离公式
- 相交直线的交点坐标
- 两点间的距离公式
- 点到直线的距离公式
- 两条平行线间的距离公式
- 直线综合
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在直角坐标系内,已知
是以点
为圆心的圆上的一点,折叠该圆两次使点
分别与圆上不相同的两点(异于点
)重合,两次的折痕方程分别为
和
,若圆上存在点
,使得
,其中点
、
,则
的取值范围为( )











A.![]() | B.![]() | C.![]() | D.![]() |
在直角坐标系
中,已知曲线
的参数方程为
为参数),以坐标原点为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的直角坐标方程;
(2)设点
在
上,点
在
上,求
的最小值及此时点
的直角坐标.






(1)求曲线

(2)设点






在平直角坐标系
中,已知点
,
(1)在
轴的正半轴上求一点
,使得以
为直径的圆过
点,并求该圆的方程;
(2)在(1)的条件下,点
在线段
内,且
平分
,试求
点的坐标.



(1)在




(2)在(1)的条件下,点




