- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线的倾斜角与斜率
- 直线的方程
- + 直线的交点坐标与距离公式
- 相交直线的交点坐标
- 两点间的距离公式
- 点到直线的距离公式
- 两条平行线间的距离公式
- 直线综合
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
:
(
)的焦点为
,点
在抛物线
上,且
,直线
与抛物线
交于
,
两点,
为坐标原点.
(1)求抛物线
的方程;
(2)求
的面积.












(1)求抛物线

(2)求

在平面直角坐标系中,已知椭圆两焦点坐标为
,
,椭圆
上的点到右焦点距离最小值为
.
(1)求椭圆
的方程;
(2)设斜率为-2的直线交曲线
于
、
两点,求线段
的中点
的轨迹方程;
(3)设经过点
的直线与曲线
相交所得的弦为线段
,求
的面积的最大值(
是坐标原点).




(1)求椭圆

(2)设斜率为-2的直线交曲线





(3)设经过点




