- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线的一般式方程及辨析
- 直线一般式方程与其他形式之间的互化
- 由一般式方程判断直线的平行
- 由一般式方程判断直线的垂直
- 由两条直线平行求方程
- 由两条直线垂直求方程
- + 直线过定点问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点R为曲线
上任意一点,定点
满足
,过点
分别作斜率为
,
的曲线
的动弦AB,CD,设P,Q分别为线段AB,CD的中点.
求曲线的方程;
当线段AB长度最小时,求
;
若
,求证直线PQ恒过定点,并求出定点坐标.












(1)求经过直线l1:x+3y-3=0,l2:x-y+1=0的交点且平行于直线2x+y-3=0的直线方程.
(2)求证:不论m取什么实数,直线(2m-1)x+(m+3)y-(m-11)=0都经过一个定点,并求出这个定点的坐标.
(2)求证:不论m取什么实数,直线(2m-1)x+(m+3)y-(m-11)=0都经过一个定点,并求出这个定点的坐标.
在平面直角坐标系
中,已知圆
的方程为:
,直线
的方程为
.
(1)求证:直线
恒过定点;
(2)当直线
被圆
截得的弦长最短时,求直线
的方程;
(3)在(2)的前提下,若
为直线
上的动点,且圆
上存在两个不同的点到点
的距离为
,求点
的横坐标的取值范围.





(1)求证:直线

(2)当直线



(3)在(2)的前提下,若






直线(2k﹣1)x﹣(k+3)y﹣(k﹣11)=0(k∈R)所经过的定点是( )
A.(5,2) | B.(2,3) | C.(﹣![]() | D.(5,9) |