- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线两点式方程及辨析
- 直线截距式方程及辨析
- + 直线与坐标轴围成图形的面积问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知直线
,且与坐标轴形成的三角形面积为
.求:
(1)求证:不论
为何实数,直线
过定点P;
(2)分别求
和
时,所对应的直线条数;
(3)针对
的不同取值,讨论集合
直线
经过P,且与坐标轴围成的三角形面积为
中的元素个数.


(1)求证:不论


(2)分别求


(3)针对




根据下列条件分别求出直线l的方程.
(1)直线l经过A(4,1),且横、纵截距相等;
(2)直线l平行于直线3x+4y+17=0,并且与两坐标轴围成的三角形的面积为24.
(1)直线l经过A(4,1),且横、纵截距相等;
(2)直线l平行于直线3x+4y+17=0,并且与两坐标轴围成的三角形的面积为24.
设直线
的方程为
.
(1)求证:不论
为何值,直线
必过一定点
;
(2)若直线
分别与
轴正半轴,
轴正半轴交于点
,
,当
而积最小时,求
的周长;
(3)当直线
在两坐标轴上的截距均为整数时,求直线
的方程.


(1)求证:不论



(2)若直线







(3)当直线


在平面直角坐标系中,已知直线l过点
.
(1)若直线l的纵截距和横截距相等,求直线l的方程;
(2)若直线l与两坐标轴围成的三角形的面积为
,求直线l的方程.

(1)若直线l的纵截距和横截距相等,求直线l的方程;
(2)若直线l与两坐标轴围成的三角形的面积为

(1)已知直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4,当0<a<2时,直线l1,l2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a的值;
(2)已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A,B两点,如图所示,求△ABO的面积的最小值及此时直线l的方程.
(2)已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A,B两点,如图所示,求△ABO的面积的最小值及此时直线l的方程.

有定点P(6,4)及定直线l:y=4x,Q是l上在第一象限内的点.PQ交x轴的正半轴于M点,问点Q在什么位置时,△OMQ的面积最小,并求出最小值.