- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 直线与方程
- 直线的倾斜角与斜率
- 直线的方程
- 直线的交点坐标与距离公式
- 直线综合
- 圆与方程
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
有下列五个命题:
(1)在平面内,
、
是定点,
,动点
满足
,则点
的轨迹是椭圆;
(2)过M(2,0)的直线L与椭圆
交于P1、P2两点,线段P1P2中点为P,设直线L的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2等于-
;
(3)“若
,则方程
是椭圆”;
(4)椭圆
的两个焦点为
,点
为椭圆上的点,则能使
的点
的个数0个;
(5)“
”是“直线
与直线
垂直”的必要不充分条件;
其中真命题的序号是 .
(1)在平面内,






(2)过M(2,0)的直线L与椭圆


(3)“若


(4)椭圆





(5)“



其中真命题的序号是 .
设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P,若AB的中点为C,则|PC|=________.
设A(x1,y1).B(x2,y2)两点在抛物线y=2x2上,l是AB的垂直平分线.
(1)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论;
(2)当直线l的斜率为2时,求l在y轴上截距的取值范围.
(1)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论;
(2)当直线l的斜率为2时,求l在y轴上截距的取值范围.
过点A(﹣1,﹣3),且斜率是直线y=3x的斜率的
的直线方程是( )

A.x﹣4y﹣11=0 | B.x+4y+13=0 | C.3x﹣4y﹣9=0 | D.3x+4y+15=0 |
(2015秋•南充期末)已知直线l经过直线3x+4y﹣2=0与直线2x+y+2=0的交点P,且垂直直线2x﹣y﹣1=0.
(Ⅰ)求直线l的方程;
(Ⅱ)已知直线l与圆x2﹣2x+y2=0相交于A,B两点,求弦AB的长.
(Ⅰ)求直线l的方程;
(Ⅱ)已知直线l与圆x2﹣2x+y2=0相交于A,B两点,求弦AB的长.