- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
数学家欧拉在1765年提出:三角形的外心、重心位于同一直线上,这条直线被后人称之为三角形的欧拉线,若
的顶点
,
,且
的欧拉线的方程为
.
(1)求
外心
(外接圆圆心)的坐标;
(2)求顶点
的坐标.
(注:如果
三个顶点坐标分别为
,
,
,则
重心的坐标是
.)





(1)求


(2)求顶点

(注:如果






从
出发的一条光线经x轴反射后经过椭圆
的上顶点,以该椭圆右顶点A为圆心,
为半径的圆与反射光线没有公共点,则r的取值范围为________.


