- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 不等式的性质
- 一元二次不等式
- 其他不等式
- + 线性规划
- 二元一次不等式(组)确定的可行域
- 简单的线性规划问题
- 非线性的可行域与目标函数
- 基本不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知△ABC的顶点A(3,0),B(0,1),C(1,1),P(x,y)在△ABC内部(包括边界),若目标函数z=
(a≠0)取得最大值时的最优解有无穷多组,则点(a,b)的轨迹可能是( )

A.![]() | B.![]() |
C.![]() | D.![]() |
要将两种厚度、材质相同,大小不同的钢板截成
、
、
三种规格的成品.每张钢板可同时截得三种规格的块数如下表:
每张钢板的面积:第一张为
,第二张为
.今需要
、
、
三种规格的成品各为12、15、27块.则两种钢板各截多少张,可得所需三种规格的成品,且使所用钢板的面积最少?



成品规格类型 钢板类型 | A规格 | B规格 | C规格 |
第一种钢板 | 1 | 2 | 1 |
第二种钢板 | 1Z,X,X,K] | 1 | 3 |
每张钢板的面积:第一张为





甲、乙两公司生产同一种产品,但由于设备陈旧,需要更新.经测算对于函数
、
及任意的
,当甲公司投放
万元改造设备时,若乙公司投放改造设备费用小于
万元,则乙公司有倒闭的风险,否则无倒闭的风险;同样,当乙公司投入
万元改造设备时,若甲公司投入改造设备费用小于
万元,则甲公司有倒闭的风险,否则无倒闭的风险.
(1)请解释
、
的实际意义;
(2)设
,
,甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无倒闭风险的情况下尽可能地减少改造设备资金.那么,甲、乙两公司至少各投入多少万元?







(1)请解释


(2)设

