- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- + 不等式的性质
- 由已知条件判断所给不等式是否正确
- 由不等式的性质比较数(式)大小
- 作差法比较不等式的大小
- 作商法比较不等式的大小
- 由不等式的性质证明不等式
- 利用不等式求值或取值范围
- 一元二次不等式
- 其他不等式
- 线性规划
- 基本不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数
的不足近似值和过剩近似值分别为
和
(
),则
是
的更为精确的不足近似值或过剩近似值.我们知道
,若令
,则第一次用“调日法”后得
是
的更为精确的过剩近似值,即
,若每次都取最简分数,那么第三次用“调日法”后可得
的近似分数为( )












A.![]() | B.![]() | C.![]() | D.![]() |