- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- + 向量在几何中的应用
- 用向量证明线段垂直
- 用向量解决夹角问题
- 用向量解决线段的长度问题
- 向量与几何最值
- 向量在几何中的其他应用
- 向量在物理中的应用
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),
,动点M(x,y)的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知
,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB(O为坐标原点),并求该圆的方程。

(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知

如图,四边形ABCD是边长为3的正方形,把各边三等分后,共有16个交点,从中选取两个交点组成向量,则与
共线且长度为2
的向量个数是________.


