- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 平面向量数量积的定义
- + 平面向量数量积的运算
- 用定义求向量的数量积
- 数量积的运算律
- 已知数量积求模
- 向量夹角的计算
- 垂直关系的向量表示
- 数量积的坐标表示
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在直角坐标系平面
上的一列点
,
,…,
,记为
,若由
构成的数列
满足
,
,其中
为与
轴正方向相同的单位向量,则称
为
点列.
(1)判断
,
,
,…,
,是否为
点列,并说明理由;
(2)若
为
点列.且点
在点
的右上方,(即
)任取其中连续三点
,
,
判断
的形状(锐角三角形,直角三角形,钝角三角形),并给予证明;
(3)若
为
点列,正整数
,满足
.求证:
.













(1)判断





(2)若









(3)若




