- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 平面向量数量积的定义
- + 平面向量数量积的运算
- 用定义求向量的数量积
- 数量积的运算律
- 已知数量积求模
- 向量夹角的计算
- 垂直关系的向量表示
- 数量积的坐标表示
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
、
是非零向量,构造集合
,记
中模最小的向量为
.
(1)若
,求
的值(用
、
表示);
(2)证明:
;
(3)若
,且
、
的夹角为
,定义向量序列
,
,
,求
的值.





(1)若




(2)证明:

(3)若








已知一列非零向量
满足:
,
,其中
是正数
(1)求数列
的通项公式;
(2)求证:当
时,向量
与
的夹角为定值;
(3)当
时,把
中所有与
共线的向量按原来的顺序排成一列,记为
,令
,
为坐标原点,求点列
的极限点
的坐标.(注:若点坐标为
,且
,则称点
为点列的极限点)




(1)求数列

(2)求证:当



(3)当










