- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 正交分解的理解
- + 用坐标表示平面向量
- 平面向量有关概念的坐标表示
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,在平面斜坐标系xOy中,∠xOy=60°,平面上任意一点P关于斜坐标系的斜坐标是这样定义的:若
=xe1+ye2(其中e1,e2分别为x轴、y轴同方向的单位向量),则点P的斜坐标为(x,y).

(1)若点P在斜坐标系xOy中的斜坐标为(2,-2),求点P到原点O的距离.
(2)求以原点O为圆心,1为半径的圆在斜坐标系xOy中的方程.


(1)若点P在斜坐标系xOy中的斜坐标为(2,-2),求点P到原点O的距离.
(2)求以原点O为圆心,1为半径的圆在斜坐标系xOy中的方程.
在△ABC中,已知A(2,1),B(0,2),
=(1,-2),则向量
= ( )


A.(0,0) | B.(2,2) |
C.(-1,-1) | D.(-1,2) |
如图,设Ox,Oy是平面内相交成60°角的两条数轴,
,
分别是与x轴、y轴正方向同向的单位向量,若
=x
+y
,则把有序数对(x,y)叫做向量
在坐标系xOy中的坐标假设
=(2,2),则|
|=( )










A.![]() | B.![]() | C.![]() | D.![]() |