- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 识别正(余)弦型三角函数的图象
- + 由图象确定正(余)弦型函数解析式
- 由正(余)弦函数的性质确定图象(解析式)
- 正、余弦型三角函数图象的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,某港口一天6时到18时的水深变化曲线近似满足函数
,据此函数可知,这段时间水深(单位:m)的最大值为( )



A.5 | B.6 | C.8 | D.10 |
某海滨浴场一天的海浪高度
是时间
的函数,记作
,下表是某天各时的浪高数据:
(1)选用一个三角函数来近似描述这个海滨浴场的海浪高度
与时间
的函数关系;
(2)依据规定,当海浪高度不少于
时才对冲浪爱好者开放海滨浴场,请依据(1)的结论,判断一天内的
至
之间,有多少时间可供冲浪爱好者进行冲浪?



![]() | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
![]() | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
(1)选用一个三角函数来近似描述这个海滨浴场的海浪高度


(2)依据规定,当海浪高度不少于


