- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 求含cosx型的函数的定义域
- 求cosx型函数的值域
- 求含cosx的二次式的最值
- + 求cosx(型)函数的最值
- 由cosx(型)函数的值域(最值)求参数
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢的往上转,可以从高处俯瞰四周的景色(如图1).某摩天轮的最高点距离地面的高度为 90 米,最低点距离地面 10 米,摩天轮上均匀设置了 36 个座舱(如图2).开启后摩天轮按逆时针方向匀速转动,游客在座舱离地面最近时的位置进入座舱,摩天轮转完一周后在相同的位置离开座舱.摩天轮转一周需要30分钟,当游客甲坐上摩天轮的座舱开始计时.

(1) 经过t 分钟后游客甲距离地面的高度为H 米,已知H 关于t 的函数关系式满足H(t)=Asin(ωt+φ)+B其中A>0,ω> 0),求摩天轮转动一周的解析式H(t);
(2) 问:游客甲坐上摩天轮后多长时间,距离地面的高度恰好为 30 米?
(3) 若游客乙在游客甲之后进入座舱,且中间相隔 5 个座舱,在摩天轮转动一周的过程中,记两人距离地面的高度差为h 米,求 h 的最大值.

(1) 经过t 分钟后游客甲距离地面的高度为H 米,已知H 关于t 的函数关系式满足H(t)=Asin(ωt+φ)+B其中A>0,ω> 0),求摩天轮转动一周的解析式H(t);
(2) 问:游客甲坐上摩天轮后多长时间,距离地面的高度恰好为 30 米?
(3) 若游客乙在游客甲之后进入座舱,且中间相隔 5 个座舱,在摩天轮转动一周的过程中,记两人距离地面的高度差为h 米,求 h 的最大值.
平面直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
的极坐标方程及曲线
的直角坐标方程;
(2)若
是直线
上一点,
是曲线
上一点,求
的最大值.







(1)求直线


(2)若





已知函数
,
(其中
,
,
)的图象与
轴的交点中,相邻两个交点之间的距离为
,且图象上一个最高点为
.
(1)求
的解析式;
(2)先把函数
的图象向左平移
个单位长度,然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数
的图象,试写出函数
的解析式.
(3)在(2)的条件下,若存在
,使得不等式
成立,求实数
的最小值.








(1)求

(2)先把函数




(3)在(2)的条件下,若存在


