- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 求含sinx型函数的定义域
- + 求含sinx型函数的值域和最值
- 由正弦(型)函数的值域(最值)求参数
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系
中,对于点
,若函数
满足:
,都有
,就称这个函数是点
的“限定函数”.以下函数:①
,②
,③
,④
,其中是原点
的“限定函数”的序号是______ .已知点
在函数
的图象上,若函数
是点
的“限定函数”,则
的取值范围是______ .
















在平面直角坐标系中,已知
为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(1)若
,
,
,求方程
在区间
内的解集;
(2)若点
是
上的动点,当
时,设函数
的值域为集合
,不等式
的解集为集合
.若
恒成立,求实数
的最大值.








(1)若





(2)若点









对于定义在
上的函数
,如果存在两条平行直线
与
,使得对于任意
,都有
恒成立,那么称函数
是带状函数,若
,
之间的最小距离
存在,则称
为带宽.
(1)判断函数
是不是带状函数?如果是,指出带宽(不用证明);如果不是,说明理由;
(2)求证:函数
(
)是带状函数;
(3)求证:函数
(
)为带状函数的充要条件是
.












(1)判断函数

(2)求证:函数


(3)求证:函数


