- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦函数的图象
- 余弦函数的图象
- 正弦函数的单调性
- + 正弦函数的定义域、值域和最值
- 求含sinx型函数的定义域
- 求含sinx型函数的值域和最值
- 由正弦(型)函数的值域(最值)求参数
- 正弦函数的奇偶性
- 正弦函数的周期性
- 正弦函数的对称性
- 余弦函数的单调性
- 余弦函数的定义域、值域和最值
- 余弦函数的奇偶性
- 余弦函数的周期性
- 余弦函数的对称性
- 正切函数的图象
- 正切函数的单调性
- 正切函数的奇偶性
- 正切函数的周期性
- 正切函数的对称性
- 正切函数的定义域、值域和最值
- 正(余)弦型三角函数的图象
- 正切型三角函数的图象
- 三角函数图象的综合应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,则函数( )

A.![]() ![]() ![]() |
B.![]() ![]() ![]() |
C.![]() ![]() ![]() |
D.![]() ![]() ![]() |
在平面直角坐标系
中,直线
的普通方程是
,曲线
的参数方程是
(
为参数).在以
为极点,
轴的正半轴为极轴建立的极坐标系中,曲线
的极坐标方程是
.
(1)求直线
及曲线
的极坐标方程;
(2)已知直线
与曲线
交于
两点,直线
与曲线
交于
两点,求
的最大值.










(1)求直线


(2)已知直线







[选修4-4:坐标系与参数方程]
以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l的坐标方程为
,曲线C的参数方程为
(θ为参数).
(1)求直线l的直角坐标方程和曲线C的普通方程;
(2)以曲线C上的动点M为圆心、r为半径的圆恰与直线l相切,求r的最小值.
以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l的坐标方程为


(1)求直线l的直角坐标方程和曲线C的普通方程;
(2)以曲线C上的动点M为圆心、r为半径的圆恰与直线l相切,求r的最小值.