- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦函数的图象
- 余弦函数的图象
- 正弦函数的单调性
- + 正弦函数的定义域、值域和最值
- 求含sinx型函数的定义域
- 求含sinx型函数的值域和最值
- 由正弦(型)函数的值域(最值)求参数
- 正弦函数的奇偶性
- 正弦函数的周期性
- 正弦函数的对称性
- 余弦函数的单调性
- 余弦函数的定义域、值域和最值
- 余弦函数的奇偶性
- 余弦函数的周期性
- 余弦函数的对称性
- 正切函数的图象
- 正切函数的单调性
- 正切函数的奇偶性
- 正切函数的周期性
- 正切函数的对称性
- 正切函数的定义域、值域和最值
- 正(余)弦型三角函数的图象
- 正切型三角函数的图象
- 三角函数图象的综合应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若函数
,
,
,
的最大值为1.
(1)求
的值;
(2)若函数
在
内没有对称轴,求
的取值范围;
(3)若函数
满足
恒成立,且在任意两个相邻奇数所形成的闭区间内总存在至少两个零点,求
的最小值.




(1)求

(2)若函数



(3)若函数



在直角坐标系xOy中,曲线C的参数方程为
,在以O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为
.
(1)设曲线C与直线l的交点为A、B,求弦AB的中点P的直角坐标;
(2)动点Q在曲线C上,在(1)的条件下,试求△OPQ面积的最大值.


(1)设曲线C与直线l的交点为A、B,求弦AB的中点P的直角坐标;
(2)动点Q在曲线C上,在(1)的条件下,试求△OPQ面积的最大值.