- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦函数的图象
- + 余弦函数的图象
- 五点法画余弦函数的图象
- y=Acosx+B的图象
- 含绝对值的余弦函数的图象
- 余弦函数图象的应用
- 正弦函数的单调性
- 正弦函数的定义域、值域和最值
- 正弦函数的奇偶性
- 正弦函数的周期性
- 正弦函数的对称性
- 余弦函数的单调性
- 余弦函数的定义域、值域和最值
- 余弦函数的奇偶性
- 余弦函数的周期性
- 余弦函数的对称性
- 正切函数的图象
- 正切函数的单调性
- 正切函数的奇偶性
- 正切函数的周期性
- 正切函数的对称性
- 正切函数的定义域、值域和最值
- 正(余)弦型三角函数的图象
- 正切型三角函数的图象
- 三角函数图象的综合应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的最小正周期为
,则函数
的图象( )



A.可由函数![]() ![]() |
B.可由函数![]() ![]() |
C.可由函数![]() ![]() |
D.可由函数![]() ![]() |
已知函数f(x)=
cos(2x-
).
(1)利用“五点法”,完成以下表格,并画出函数f(x)在一个周期上的图象;
(2)求函数f(x)的单调递减区间和对称中心的坐标;
(3)如何由y=cosx的图象变换得到f(x)的图象.


(1)利用“五点法”,完成以下表格,并画出函数f(x)在一个周期上的图象;
(2)求函数f(x)的单调递减区间和对称中心的坐标;
(3)如何由y=cosx的图象变换得到f(x)的图象.
2x-![]() | 0 | ![]() | π | ![]() | 2π |
x | | | | | |
f(x) | | | | | |
已知函数f(x)=cos(ωx+φ)(ω>0,|φ|≤
),x=-
为f(x)的零点,x=
为y=f(x)图象的对称轴,且f(x)在(
,
)上单调,则ω的最大值为______ .




