- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- + 三角函数
- 任意角和弧度制
- 任意角的三角函数
- 同角三角函数的基本关系
- 三角函数的诱导公式
- 三角函数的图象与性质
- 函数y=Asin(ωx+φ)的图象变换
- 三角函数的应用
- 三角恒等变换
- 解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为
,这一数值也可以表示为
.若
,则
=____ .(用数字作答)




已知函数
(
,
为常数,
,
)在
处取得最大值,则函数
是( )







A.奇函数且它的图象关于点![]() | B.偶函数且它的图象关于点![]() |
C.奇函数且它的图象关于![]() | D.偶函数且它的图象关于![]() |
(本小题满分13分)如图,在直角坐标系
中,角
的顶点是原点,始边与
轴正半轴重合.终边交单位圆于点
,且
,将角
的终边按逆时针方向旋转
,交单位圆于点
,记
.

(1)若
,求
;
(2)分别过
作
轴的垂线,垂足依次为
,记
的面积为
,
的面积为
,若
,求角
的值.










(1)若


(2)分别过









函数f(x)=sinπx+cosπx+|sinπx﹣cosπx|对任意x∈R有f(x1)≤f(x)≤f(x2)成立,则|x2﹣x1|的最小值为 .
如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度
(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).

(1)要使倾斜后容器内的溶液不会溢出,角
的最大值是多少?
(2)现需要倒出不少于
的溶液,当
时,能实现要求吗?请说明理由.


(1)要使倾斜后容器内的溶液不会溢出,角

(2)现需要倒出不少于


已知x∈R,设
,
,记函数
.
(1)求函数
取最小值时x的取值范围;
(2)设△ABC的角A,B,C所对的边分别为a,b,c,若
,
,求△ABC的面积S的最大值.



(1)求函数

(2)设△ABC的角A,B,C所对的边分别为a,b,c,若

