- 集合与常用逻辑用语
- 函数与导数
- 用导数判断或证明已知函数的单调性
- 利用导数求函数的单调区间
- + 由函数的单调区间求参数
- 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
是定义在
上的函数,若存在
,使得
在
单调递增,在
上单调递减,则称
为
上的单峰函数,
为峰点,包含峰点的区间称为含峰区间,其含峰区间的长度为:
.
(1)判断下列函数中,哪些是“
上的单峰函数”?若是,指出峰点;若不是,说出原因;
;
(2)若函数
是
上的单峰函数,求实数
的取值范围;
(3)若函数
是区间
上的单峰函数,证明:对于任意的
,若
,则
为含峰区间;若
,则
为含峰区间;试问当
满足何种条件时,所确定的含峰区间的长度不大于0.6.










(1)判断下列函数中,哪些是“


(2)若函数



(3)若函数








已知函数f(x)=lnx
.
(1)若a=4,求函数f(x)的单调区间;
(2)若函数f(x)在区间(0,1]内单调递增,求实数a的取值范围;
(3)若x1、x2∈R+,且x1≤x2,求证:(lnx1﹣lnx2)(x1+2x2)≤3(x1﹣x2).

(1)若a=4,求函数f(x)的单调区间;
(2)若函数f(x)在区间(0,1]内单调递增,求实数a的取值范围;
(3)若x1、x2∈R+,且x1≤x2,求证:(lnx1﹣lnx2)(x1+2x2)≤3(x1﹣x2).