- 集合与常用逻辑用语
- 函数与导数
- + 用导数判断或证明已知函数的单调性
- 利用导数求函数的单调区间
- 由函数的单调区间求参数
- 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
且函数
图象上点
处的切线斜率为0.
(Ⅰ)试用含有
的式子表示
,并讨论
的单调性;
(Ⅱ)对于函数图象上的不同两点
,
如果在函数图象上存在点
,
使得点
处的切线
,则称
存在“跟随切线”.特别地,当
时,又称
存在“中值跟随切线”.试问:函数
上是否存在两点
,
使得它存在“中值跟随切线”,若存在,求出
,
的坐标,若不存在,说明理由.



(Ⅰ)试用含有



(Ⅱ)对于函数图象上的不同两点














如果函数
在区间
上存在
,满足
,
,则称函数
是区间
上的“双中值函数”.已知函数
是区间
上的“双中值函数”,则实数
的取值范围是()










A.(![]() ![]() | B.(![]() | C.(![]() | D.(![]() |
若存在实常数
和
,使得函数
和
对其公共定义域上的任意实数
都满足:
和
恒成立,则称此直线
为
和
的“隔离直线”,已知函数
,
,有下列命题:
①
在
内单调递增;
②
和
之间存在“隔离直线”,且
的最小值为-4;
③
和
之间存在“隔离直线”,且
的取值范围是
;
④
和
之间存在唯一的“隔离直线”
.
其中真命题的个数有( )












①


②



③




④



其中真命题的个数有( )
A.1个 | B.2个 | C.3个 | D.4个 |