- 集合与常用逻辑用语
- 函数与导数
- 基本初等函数的导数公式
- + 导数的运算法则
- 简单复合函数的导数
- 导数的加减法
- 导数的乘除法
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“乖点”.有同学发现“任何一个三次函数都有“乖点”;任何一个三次函数都有对称中心;且“乖点”就是对称中心.”请你根据这一发现,请回答问题:若函数g(x)
x3
x2+3x
,则g(
)+g(
)+g(
)+g(
)+…+g(
)=_____








对于三次函数
,给出定义:设
是函数
的导数,
是
的导数,若方程
=0有实数解
,则称点(
,
)为函数
的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数
,则
____________.












对于三次函数
,定义:设
是函数
的导数
的导数,若方程
有实数解
,则称点
为函数
的“拐点”,有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”根据此发现,若函数
,计算
__________.










对于三次函数
,给出定义:设
是函数
的导数,
是
的导数,若方程
=0有实数解
,则称点(
,
)为函数的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数
,则
____________.










