- 集合与常用逻辑用语
- 函数与导数
- + 指数函数模型的应用(2)
- 对数函数模型的应用(2)
- 幂函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某地自2014年至2019年每年年初统计所得的人口数量如下表所示:
(1)根据表中的数据计算2014年至2018年每年该地人口的增长数量,并描述该地人口数量的变化趋势;
(2)研究人员用函数
拟合该地的人口数量,其中
的单位是年,2014年初对应时刻
的单位是干人,设
的反函数为
求
的值(精确到0.1),并解释其实际意义.
年份 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
人数/千人 | 2082 | 2135 | 2203 | 2276 | 2339 | 2385 |
(1)根据表中的数据计算2014年至2018年每年该地人口的增长数量,并描述该地人口数量的变化趋势;
(2)研究人员用函数






某商品的价格前两年每年递增20%,后两年每年递减20%,最后一年的价格与原来的价格比较,变化情况是( )
A.不增不减 | B.约增1.4% |
C.约减9.2% | D.约减7.8% |
一古寺有一池储满了水,现一小和尚每日,按照池中所剩水一定的百分率打走一些水,且每次打水的百分率一样.10日过去,池中水恰为满池水的一半.
(1)求此百分率.(保留指数形式)
(2)若某日小和尚打完水,池中水为满池水的
倍,小和尚已打水几日?
(3)若某日小和尚打完水,池中水为满池水的
倍,若古寺要求池中水不少于满池水的
,则小和尚还能再打几日水?
(1)求此百分率.(保留指数形式)
(2)若某日小和尚打完水,池中水为满池水的

(3)若某日小和尚打完水,池中水为满池水的


某城市现有人口总数为100万人,如果年自然增长率为
试回答下面的问题:
(1)写出该城市人口总数
(万人)与年份
(年)的函数关系式;
(2)计算10年以后该城市人口总数(精确度为0.1万人);
(3)计算大约多少年以后该城市人口总数将达到120万人(精确度为1年).
(提示:
;
)

(1)写出该城市人口总数


(2)计算10年以后该城市人口总数(精确度为0.1万人);
(3)计算大约多少年以后该城市人口总数将达到120万人(精确度为1年).
(提示:


某种计算机病毒通过电子邮件进行传播,如果一台计算机感染上这种病毒,那么它就会在下一轮病毒发作时传播一次病毒,并感染其他20台未感染病毒的计算机.现有10台计算机被第一轮病毒感染,那么被第4轮病毒感染的计算机有________台.
某食品的保鲜时间
(单位:小时)与储存温度
(单位:
)满足函数关系
(
为自然对数的底数,
为常数)若该食品在
的保鲜时间是384小时,在
的保鲜时间是24小时,则该食品在
的保险时间是( )小时









A.6 | B.12 | C.18 | D.24 |
我国古代著名的思想家庄子在《庄子·天下篇》中说:“一尺之锤,日取其半,万世不竭”.用现代语言叙述为:一尺长的木棒,每天取其一半,永远也取不完.这样,每天剩下的部分都是前一天的一半,如果把“一尺之锤”看成单位“1”,那么10天后剩下的部分是( ).
A.![]() | B.![]() | C.![]() | D.![]() |