- 集合与常用逻辑用语
- 函数与导数
- + 指数函数模型的应用(2)
- 对数函数模型的应用(2)
- 幂函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:
A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;
B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;
C树木:树木的高度
(单位:米)与生长年限
(单位:年,
)满足如下函数:
(
表示种植前树木的高度,取
).
(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?
(2)若选C树木,从种植起的6年内,第几年内生长最快?
A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;
B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;
C树木:树木的高度






(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?
(2)若选C树木,从种植起的6年内,第几年内生长最快?
渔民出海打鱼,为了保证获得的鱼新鲜,鱼被打上岸后,要在最短的时间内将其分拣、冷藏,若不及时处理,打上来的鱼很快地失去新鲜度(以鱼肉内的三甲胺量的多少来确定鱼的新鲜度.三甲胺是一种挥发性碱性氨,是氨的衍生物,它是由细菌分解产生的.三甲胺量积聚就表明鱼的新鲜度下降,鱼体开始变质进而腐败).已知某种鱼失去的新鲜度
与其出海后时间
(分)满足的函数关系式为
.若出海后10分钟,这种鱼失去的新鲜度为10%,出海后20分钟,这种鱼失去的新鲜度为20%,那么若不及时处理,打上来的这种鱼在多长时间后开始失去全部新鲜度(已知
,结果取整数)( )




A.33分钟 | B.43分钟 | C.50分钟 | D.56分钟 |
科学家发现某种特别物质的温度
(单位:摄氏度)随时间
(时间:分钟)的变化规律满足关系式:
(
,
).
(1)若
,求经过多少分钟,该物质的温度为
摄氏度;
(2)如果该物质温度总不低于
摄氏度,求
的取值范围.





(1)若


(2)如果该物质温度总不低于


某高校为提升科研能力,计划逐年加大科研经费投人.若该高校
年全年投入科研经费
万元,在此基础上,每年投人的科研经费比上一年增长
,则该高校全年投入的科研经费开始超过
万元的年份是(参考数据:
,
,
)( )







A.![]() | B.![]() |
C.![]() | D.![]() |
1992年底世界人口达到54.8亿,若人口的平均增长率为
,经过
年后世界人口数为
(亿),则
与
的函数解析式为___________________





某种细菌经60分钟培养,可繁殖为原来的2倍,且知该细菌的繁殖规律为y=10ekt,其中k为常数,t表示时间(单位:小时 ),y表示细菌个数,10个细菌经过7小时培养,细菌能达到的个数为( )
A.640 | B.1 280 |
C.2 560 | D.5 120 |
当生物死亡后,其体内原有的碳
的含量大约每经过
年衰减为原来的一半,这个时间称为“半衰期”.在一次考古挖掘中,考古学家发现一批鱼化石,经检测其碳14含量约为原始含量的
,则该生物生存的年代距今约()



A.![]() | B.![]() | C.![]() | D.![]() |