- 集合与常用逻辑用语
- 函数与导数
- 函数零点的定义
- + 函数零点存在性定理
- 根据零点判断函数值的符号
- 零点存在性定理的应用
- 根据零点所在的区间求参数的取值或取值范围
- 函数零点的分布
- 用二分法求方程的近似解
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若函数
的图象是连续不断的,且
,
,
,则加上下列哪个条件可确定
有唯一零点( )





A.![]() | B.![]() |
C.函数在定义域内为增函数 | D.函数在定义域内为减函数 |
设函数
,
,其中
.
(1)若
,证明:当
时,
;
(2)设
,且
,其中
是自然对数的底数.
①证明
恰有两个零点;
②设
如为
的极值点,
为
的零点,且
,证明:
.



(1)若



(2)设



①证明

②设





