- 集合与常用逻辑用语
- 函数与导数
- + 函数与方程
- 函数零点的定义
- 函数零点存在性定理
- 函数零点的分布
- 用二分法求方程的近似解
- 函数模型及其应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义:如果函数
在定义域内给定区间
上存在
,满足
,则称函数
是
上的“平均值函数”,
是它的一个均值点.例如
是
上的平均值函数,0就是它的均值点.若函数
是
上的“平均值函数”,则实数m的取值范围是______.











设函数
在
上有意义,实数
和
满足
,若
在区间
上不存在最小值,则称
在
上具有性质
.
(1)当
,且
在区间
上具有性质
时,求常数
的取值范围;
(2)已知
,且当
,
,判断
在区间
上是否具有性质
,请说明理由:
(3)若对于满足
的任意实数
和
,
在
上具有性质
时,且对任意
,当
时有:
,证明:当
时,
.










(1)当





(2)已知






(3)若对于满足










